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Introduction
Carole B. Lacampagne

This publication contains plenary and reactor papers presented at the Algebra

Initiative Colloquium held on December 9-12, 1993, in Leesburg, Virginia (see the agenda,

appendix A). It also contains a summary and recommendations from the working groups.

The Algebra Initiative Colloquium, sponsored by the U.S. Department of Education's

Office of Educational Research and Improvement, addressed specific issues in the algebra

curriculum and its teaching and learning. Algebra was chosen from among the many

subject areas of mathematics because it is the language of mathematics; algebra is central

to the continued learning of mathematics at all levels. Moreover, although several groups

are already at work on the reform of algebra, there has been little dialog bridging

educational levels. The Algebra Initiative Colloquium fostered such dialog (see the

Conceptual Framework for the Algebra Initiative of the National Institute on Student

Achievement, Curriculum, and Assessment, appendix B).

Fifty-one distinguished algebra teachers, mathematics education researchers,

algebraists, and mathematics experts from federal agencies attended the Colloquium (see

Participant List, appendix C). In addition to hearing and discussing the plenary and reactor

addresses, participants were assigned to one of four working groups to debate the issues

and, where possible, to come up, with a set of recommendations. The working groups and

their foci are listed below:

Working Group 1: Creating an appropriate algebra experience for all

grades K-12 students;

Working Group 2: Educating teachers, including K-8 teachers, to provide

these algebra experiences;

Working Group 3: Reshaping algebra to serve the evolving needs of the technical

work force; and

Working Group 4: Renewing algebra at the college level to serve the future

mathematician, scientist, and engineer.

Prior to the Colloquium, working group participants wrote short papers on their

group's focus area and shared papers within the working group, thus getting a head start
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on Colloquium deliberations. These papers, revised after the Colloquium, together with

recommendations from each working group, appear in the companion publication, The

Algebra Initiative Colloquium, Volume 2.

A short document for teachers and policymakers was prepared on the basis of

recommendations from the Colloquium. This document, Algebra for All: A Lever, not a

Wedge, will soon be available through the National Institute on Student Achievement,

Curriculum, and Assessment.



Summary
Carole B. Lacampagne

Sponsored by the U.S. Department of Education, The Algebra Initiative Colloquium

generated a number of questions, concerns, and recommendations to promote the reform

in algebra across the educational gamut, K through 16.

According to Lynn Steen, "The major theme of this conference is very simple:

Algebra is broken but nonetheless essential." From this premise, several

subthemes/questions/concerns emerged that might be considered in setting an algebra

agenda. These include:

Algebra, the new civil right;

The chasm that separates K-12 and 13-16 algebra education;

A new algebra curriculum and pedagogy for preservice teachers and support

and practice for current teachers;

Algebra for the technical work force;

The story line of algebra; and

The brick wall.

Algebra, The New Civil Right
As Robert Moses so eloquently put it,'"Algebra is the new civil right." Working

Group 1 (Creating an appropriate algebra experience for all grades K-12 students) calls

algebra "... the academic passport for passage into virtually every avenue of the job market

and every street of schooling." Moreover, since students from non-Asian minority groups

are less likely to have obtained this passport than others, algebra becomes an equity issue.

Working Group 1 recommended that all students have significant experiences in

algebra before the end of grade 8 and that these experiences be the equivalent of current

ninth-grade algebra. They also recommended that these experiences be strands that flow

through K-8 mathematics.

Algebra for all is a bold statement. As keynote speaker Victor Katz pointed out,

algebra has a history of being an elitist subject meant for the education of future priests or

leaders. Many of the story problems found in current high school algebra texts date back



to antiquity and are artificial, not real-life problems. If wo are to implement algebra for all,

we must overcome this longstanding elitist tradition.

A question that plagued Colloquium participants was, "How do we insure that

'algebra for all' is not 'dumbing down' algebra?" The mathematical community as well as

parents of college-bound students will and should demand sound preparation in algebra for

the college bound. We will be faced with building an algebra curriculum and pedagogy that

will support the needs of all students.

Integrating algebra into the K-8 mathematics curriculum was also a topic of

considerable interest to Colloquium participants. Such integration would eliminate algebra

from its current gate-keeper function, for algebra would be learned over a period of 8

years. The college death knollfailing algebrawould no longer exist. Moreover, many

countries already integrate algebra into their K-8 curriculum through the use of a strands

approach; that is, each year a strand of algebra as well as strands of arithmetic and

geometry are taught. Several curriculum projects in the United States have developed or

are developing such an approach. These curriculum projects need to be tested in

classrooms to prove their effectivehass, and promising practices need to be disseminated.

Several participants were concerned that we do not know enough about how

children and adults develop algebraic concepts. More research is needed on how algebraic

concepts are developed. Findings from this research should then be considered when

designing algebra curriculum.

Looking to the future when algebra could be folded into the K-8 curriculum raised

several questions:

What do we do with ninth-grade mathematics once algebra has been learned

by eighth grade? How do we prepare for such change?

How do we influence public policystate legislators, boards of education?

State legislators and boards of education must adjust their ninth-grade

mathematics requirements to the Flew curriculum. How do we get parents to

buy into this new alignment?

The Chasm That Separates K-12 and 13-16 Algebra Education

It became disturbingly apparent as the Algebra Initiative Colloquium progressed that

mathematicians involved with research in the learning and teaching of algebra at the K-12

level seldom talk with those involved in algebra at the 13-16 level.
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Working Group 4 (Renewing algebra at the college level to serve the future

mathematician, scientist, and engineer) suggested several areas in which further dialog

was needed between K-12 and 13-16 people to:

Lay the basis in high school for some important ideas from linear and

abstract algebra;

Find new ways to engage students in linear and abstract algebra;

Develop places across the entire algebra experience to expose students to

the use of proof; and

Search for the big themes" which run throughout the algebra experience.

Initiatives for getting this dialog going are already under way, thanks to the

groundwork laid at the Colloquium.

A New Algebra Curriculum and Pedagogy for Preservice Teachers and
Support and Practice for Current Teachers

Reform in the school algebra experience necessitates a change in the algebra

experiences of pre- and in-service mathematics teachers. Questions wrestled with by

Working Group 2 (Educating teachers, including K-8 teachers) to provide these algebra

experiences included:

How do we help elementary school teachers gain the knowledge,

pedagogical skills, and desire to integrate algebra into the K-8 curriculum?

How can we prepare parents and communities for this new approach?

How can we encourage mathematics ant, mathematics education fecuity at

the college level to model the pedagogy we wish to see prospective teachers

use in the schools?

What experiences with mathematical modeling should pr ;- and in-service

teachers have in order to teach algebra effectively?

Working Group 2 believed that all teachers of pre-college algebra (K-12) need an in-

depth understanding of numeracy and quantitative reasoning. They should also have a

working knowledge of how to use technology in instruction and how to access real-world

examples that employ algebra. They should possess a belief in the value of mathematics

and a commitment to the development of algebraic thinking for all students.

5
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Algebra for the Technical Work Force

Working Group 3 had several recommendations for reforming the K through 14

mathematics curriculum and teaching, including that all students should study the same

mathematics through grade 11, with algebra playing a significant part in the curriculum.

Moreover, they saw mathematical modeling as a central or organizing them.: for school

mathematics. These recommendations led to such further concerns as:

What should be the common mathematics curriculum required of students

through grade 11?

What alternative mathematics courses should be taught in grade 12?

How do we mount a serious study of what algebra/mathematics is used in

technical jobs?

How do we remediate the remedial mathematics programs in our colleges?

How do adult learners best learn algebra?

Currently, we teach content, then application. If mathematical modeling were

our tocus, we would teach applications then content on a need-to-know

basis. Can or should we embark on such a radical change?

How can we begin to work with the vocational/technical education

community to provide a meaningful algebra experience in all its programs?

The Story Line of Algebra

At the Colloquium, participants had trouble identifying the "story line" of algebra.

Specifically, Bob Moses challenged us to describe what (high school, linear, or abstract)

algebra is and why a student should study it. If algebraists and teachers of algebra cannot

explain to each other what algebra is all about, how can we expect to engage prospective

students, their parents, and the community in the study of and support for algebra?

Participants felt that the mathematical community must be able to answer such questions

and to communicate these answers to the public at large.

The Brick Wall

Working Group 4 spent much time deliberating on how to confront the "brick wall";

that is, how to help students through their first proof course (usually abstract algebra).

They discussed the possibility of starting a dialog, perhaps in a journal like The American

Mathematical Monthly, on how to help students over (around) the brick wall and ol

6
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sharing concrete examples and problems in abstract algebra among those who teach

abstract algebra.

The big problem that this group wrestled with was how to reconcile the need for

formal proof at the college level with the trend to dowr play formal proof in the schools in

favor of communicating ideas and understanding.

Participants at the Algebra Initiative Colloquium made a good start in identifying

problems in the learning and teaching of algebra at all levels. They made several

recommendations to help solve these problems. But many questions they raised remain

unanswered. It is hoped that federal agencies working with leaders in the mathematical

community will provide leadership in renewing algebra to meet the needs of the 21st

century.

7
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Recommendations
Carole B. Lacampagne

Participants in the Algebra Initiative Colloquium were divided into four working

groups. They prepared and exchanged short papers before the Colloquium, and came up

with recommendations during the Colloquium. Each working group's recommendations are

summarized below.

Working Group 1 Creating an appropriate algebra experience for ALL K-12 students

(1) All students should have significant experiences in algebra (totaling at

least 1 year of work) before the end of eighth grade.

(2) All students need to learn the following aspects of algebra:

The representation of phenomena with symbols and the use of these

symbols sensibly;

The use of variables to describe patterns and give formulas involving

geometric, physical, economic, and other relations;

Simple manipulations with these variables to enable other patterns to be

seen and variations to be described;

The solving of simple equations, inequalities, and systems by hand, and of

more complicated equations, inequalities, and systems by machine; and

The picturing and examination of relationships among variables using graphs,

spreadsheets, or other technology.

(3) All students should be introduced to operations and their properties in

the various number systems (such as whole numbers, integers, real numbers,

and complex numbers), and on objects other than numbers (such as sets,

matrices, transformations, and propositions).

(4) The mastery of a small number of paper-and-pencil manipulative skills

should be expected of all students. Symbol manipulation software and

calculators should be used for other manipulative skills, perhaps including

skills not now accessible or easily accessible with paper-and-pencil

techniques.

9
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(5) Both short-term and long-term strategies are needed to ensure that all

students study a significant amount of algebra.

(6) A much expanded research base is required to make continued progress

on recommendations 1-5, including inquiry on:

What constitutes symbol sense and how it is developed;

The roles and balance of "rote skills" and machine-performed computations;

The development of modeling skills and the character of mathematical

abstraction;

The successes and difficulties of various approaches to teaching algebra

(including attempts in other countries);

The use of mathematical and algebraic thinking, often unrecognized, in work

settings; and

The creation of effective instructional environments, and the kind of teacher

understanding required to foster algebraic thinking in such environments.

Working Group 2 Educating teachers, including K-8 teachers, to provide

appropriate algebra experiences for their students

(1) Crucial concepts for teachers of pre-college algebra include:

A working knowledge of the use of technology in instruction;

Conceptualization of relations among quantities;

A commitment to the development of algebraic thinking for all students;

An understanding of the role of algebra as a gateway to academic

development and full participation in citizenship; and

Access to real-world examples using algebra.

(2) Model teacher preparation curricula need to be developed in line with the

ideas of a strands approach for the teaching of algebra for all and in light of

new technologies.

(3) Elementary and middle school teacher preparation programs should pay

particular attention to the mathematics of quantity and change where

opportunities to learn algebra occur. Applications through technology and

skills in using symbolic manipulators and graphing utilities should be an

integral part of such programs.

10
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(4) Pedagogy should be content-specific. There should be a pairing of

content and pedagogy work such as shadow seminars (seminars on teaching

issues associated with specific content courses).

Reform in algebra teaching should include attention to effective

development such as:

Studies both to synthesize existing knowledge and to create new knowledge

concerning the ways in which the teaching of mathematics encodes biases

which are often not recognized by teachers;

Mathematics examples which can be included in multicultural education

courses often required of prospective teachers; and

The development of a syllabus for a course on the multicultural history of

mathematics which should be required of all mathematics education

students.

(6) Establish a strong link between teacher preparation programs and "the

world of practice"the schools. The school should be the focus of change

for practicing teachers, with teachers determining the inservice training that

they need.

(7) Faculty enhancement should provide practicing teachers with

opportunities to:

Develop and experience a broad repertoire of strategies to enhance the

conceptual understanding of their students;

Become more knowledgeable about how students learn and to asses the

learning of their students;

Explore curricular issues related to the learning of algebra and preparing K -1 2

teachers to implement new curriculum; and

Develop or become familiar with exemplary curriculum materials which

enhance understanding of algebra.

(8) Model programs need to be identified or developed that are characterized

by:

A team approach to the identification of needs;

Support by school district administrators;

11
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A variety of sources for professional development, including universities,

professional organizations, school district administrators or staff, and other

practicing teachers; and

Mutual respect and parity among all players.

Working Group 3 Reshaping algebra to serve the evolving needs of the

technical workforce

(1) All students should study the same mathematics curriculum thrcugh

grade 11, but not the curriculum that currently exists. Algebra should be a

significant part of that curriculum, although not necessarily a discrete course.

(2) Mathematics courses in grade 12 shculd offer many alter latives.

(3) All mathematics courses (K-16) should integrate preparat,on for the

technical work force into the curriculum; pedagogy in those courses should

prepare students to become independent learners of mathematics and other

technical subjects.

(4) The mathematics curriculum should be grounded in problem solving that

reflects real-world situations and offers a variety of methods of solution.

(5) Students should have opportunities to participate in group work, make

appropriate use of technology, and develop their communication skills,

including reading and writing technical materials.

(6) Community college mathematics faculty must be involved in curriculum

development in technical areashealth, human services, business and

information management, agriculture and agribusiness, and engineering and

industry. Community colleges should take an active role in needs

assessment and articulation with secondary schools and 4-year colleges and

universities.

(7) Research is needed to determine what mathematics curriculum and

pedagogy best suit the needs of the adult learner. Specifically, research is

needed on whether the several semesters of remedial arithmetic and algebra

that many community college students now take before beginning a

technical mathematics course can be circumvented.

(8) Research is needed on the kinds of mathematics students will need to be

successful employees in a technical work force. Discovering how

12



mathematics is used in the workplace is a subtle research problem that

should be carried out by mathematicians who can recognize when

mathematics is being used in situations that do not look like textbook

examples.

Working Group 4 Renewing algebra at the college level to serve the future

mathematician, scientist, and engineer

(1) There should be more dialog between K-12 and 13-16 educators to:

Lay the basis in high school for some important ideas from linear and

abstract algebraincluding various uses of proof and explanation, reasoning

about binary operations, and working with symbol systems--important for all

students, not just the college bound;

Introduce topics from advanced algebra, especially from linear algebra;

Find new ways to connect with and engage students in linear and abstract

algebra;

Build on and be informed by the various reforms and changes taking place at

the secondary level to plan the algebra experiences of university students

(i.e., mixing deduction with experiment, using cooperative learning,

developing project-based activities, incorporating new technologies); and

Search for algebraic themes running throughout the K-16 mathematics

experience.

(2) Linear and abstract algebra courses should:

Integrate technology;

Use applications from practical situations or from other parts of mathematics;

and

Find ways to confront "the brick wall" which many students encounter in

their first proof course (usually abstract algebra), including:

Generalization only after giving concrete examples, and

Develop proof techniques through the linear algebra course.

(3) Students should use proof as a research technique throughout their

mathematics experience. Activities should be developed in lower level

courses that illustrate the value of proof as a mechanism for communication

and for establishing and discovering new results.

13
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The Development of Algebra and
Algebra Education

Victor J. Katz
University of the District of Columbia

The goal of this conference is tobegin to reform the learning and teaching of

algebra at all levels, kindergarten through graduate school. That is a major challenge,

inasmuch as algebra learning and teaching have been going on in schools around the world

for at least 4,000 years. As a first step, then, it may be well to take a glimpse at what the

learning and teaching of algebra has been over that time period.

We will begin this task the way one begins any mathematical discussion, with a

definition. What is algebra? Let us take a look at a few algebra books to see how various

authors have defined this subject. First, we consider the earliest true text in algebra, Al-

kitab al-muhtesar fi hisab al-jabr Wal-muqabala (The Condensed Book on the Calculation of

al-Jabr and al-Muqabala), by Muhammad ibn Musa al-Khwarizrni, dating to about 825. Al-

Khwarizmi simply says that he was composing "a short work on calculating by the rules of

al-jabr and al-muqabala confining it to what is easiest and most useful in arithmetic."

(Rosen, p. 3) That is not a useful definition unless we know better what al-jabr and al-

muqabala are. So, let us look at another Islamic work with virtually the same title, the Al-

jabr wyal IVTuqabala of Omar Khayyam of about 1100. Omar says, "One of the branches of

knowledge needed in that division of philosophy known as mathematics is the science of

al-jabr and al-muqabala which aims at the determination of numerical and geometrical

unknowns." (Kasir, p. 43) That is somewhat clearerthe subject is about solving

equationsand if we look further at the text we can figure out what al-jabr and al-

muqabala mean.

Al-jabr means the operation of transposing a subtracted quantity on one side of an

equation to the other side where it becomes an added quantity, while al-muqabala refers to

the reduction of a positive term by subtracting equal amounts from both sides of an

equation. For example, converting 3x + 2 = 4 - 2x to 5x + 2 = 4 is an example of al-

jabr, while converting the latter to 5x = 2 is an example of al-muqabala. But maybe we

would like a more modern version of a definition. Consider A Treatise of Algebra in Three

15
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Parts, by Colin Maclaurin, published in 1748. Maclaurin defined algebra as "a general

method of computation by certain signs and symbols which have been contrived for this

purpose and found convenient." (Maclaurin, p. 1) Leonhard Euler, in his Vollstandige

Anleitung zur Algebra (Complete Introduction to Algebra) of 1767, writes, "Algebra has

been defined as the science which teaches how to determine unknown quantities by

means of those that are known." (Euler, p. 186) In all these definitions, there seems to be

one central idea: algebra deals with the solving of equations, and with the manipulation of

signs representing numbers which is necessary for this goal. (The Islamic authors did not

speak of symbols, because they did not use any.) Nineteenth century algebra texts

seemed to agree with this definition.

Let us look at two more definitions. First, from The Normal Elementary Algebra, by

Edward Brooks (1871): "Algebra is a method of investigating quantity by means of general

characters called symbols." (Brooks, p. 19) Second, from Elements of Algebra by G. A.

Wentworth (1881): "The science which employs letters in reasoning about numbers,

either to discover their general properties or ti find the value of an unknown number from

its relations to known numbers, is called Algebra." (Wentworth, p. 4) So, we now have a

definition. Interestingly, however, if you look through 20th century algebra texts, both

elementary and advanced, there is usually no definition of the subject. Why not?

The next step after the definitions in a mathematical presentation is a discussion of

the theorems to be proved. Although these will perhaps not be proved with the normal

rigor of pure mathematics, the basic principles which will be illustrated in the remainder of

this article are the following: First, algebra has always been taught through problem

solvingand the problems have not changed much over the years. Second, the problems

are not real-life problems; they are usually quite artificial. Third, up until the 18th century,

algebra was taught through the use of ideas from other fields of mathematics, particularly

geometry. And fourth, abstraction in algebra came about only after the consideration of a

large number of concrete examples.

Where does algebra begin? Because we have defined algebra as a science

concerned with the solving of equations, we may as well begin with the earliest records

we have of such a task, namely, the Rhind Mathematical Papyrusor perhaps it should be

called the A'h-mose papyrus after the Egyptian scribe who wrote it around 1650 B.C.

rather than after the Scotsman who purchased it in Luxor in 1858. In any case, the

16
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papyrus is a copy of an original which dates back perhaps 200 years earlier. Problem 24

reads (in translation): "A quantity and its 1/7 added together become 19. What is the

quantity?" (Chace, p. 67) The method of solution, developed in detail on the papyrus, is

what is now known as false position. We make a convenient guess, here 7, and note that

7 plus 1/7 of itself is 8, not 19. But since 19 divided by 8 is 2 3/8, the correct answer

must be 7 multiplied by this same proportionality factor, 2 3/8. Thus, the answer is 16

5/8. The scribe then checks that the result is correct. As is typical in a problem solving

text, the scribe follows this example with several more problems of the same type, here

written in notation developed in the 1 7th century:

24. x + (1/7k = 19
25. x + (1/2k = 16
26. x + (1/41x = 15

27. x + (1/5k = 21
28. x + (2/3)x (1/31[x + (2/3)x] = 10.

We note that, although some of the problems of the papyrus are stated in terms of

real objects, this problemand many othersare stated purely in terms of numbers. They

are evidently designed to teach a method of solving problems. Furthermore, the method is

to be taught only to a limited few; for, as Ah-mose states in the introduction, the papyrus

provides "accurate reckoningthe entrance into the knowledge of all existing things and all

obscure secrets." (Chace, p. 27) Such knowledge, in ancient Egypt, could only be shared

with members of the priestly class. In fact, throughout most of recorded history, algebra

was only taught to the "few," not the "many." So the concept of "algebra for all" is a

very recent one and one that will take a lot of work to make into a reality.

Let us move to ancient Babylonia in the same time periodaround 1700 B.C. Here

we have much more evidence of algebraequation solvingbecause the Babylonian

scribes wrote on clay tablets, which were then baked, rather than on papyrus. Thousands

of the clay tablets have survived the centuries, but only a very few of the papyrus scrolls.

We want to consider one particular tablet, BM (British Museum) 13901. This tablet

contains 24 problems, some of which are given here in modern notation [Gandz, pp. 497-

501]:

x2 + x = 3/4
x2 x = 870
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(2/31)(2 + x = 286 2/3

+ (4/3)x = 11/12

11x2 + 7x = 6 1/4

x2 (1/3)x = 1/12

x2 + y2 = 1300, xy = 600.

We look at the fourth one in detail. A direct translation of the cuneiform gives the problem

as follows: "The sum of the area of a square and 4/3 of the side is 11/12." For the

solution, the scribe tells us to take half of 4/3, giving 2/3, square the 2/3, giving 4/9, then

add this result to 11/12, giving 1 13/36. The square root of this, namely 7/6, is then

found. Subtracting 2/3 from 7/6 gives the value 1/2 for the side. We can easily translate

this Babylonian procedure into a modern quadratic formula for solving x2 + by = c, namely

x
(-1) )2 + c

2

There are two major points to notice about this and other Babylonian tablets

containing quadratic problems. First, the scribe does not indicate how the algorithm was

derived, but just presents it numerically. And in fact, given that the problem asks us to

add an area and a side, it would seem that it is a purely numerical problem having really

nothing to do with the geometrical meaning of the words used to designate the unknowns.

Nevertheless, a close reading of the wording of the tablets seems to indicate that the

scribe had in mind a geometric procedure. It appears that the multiple 4/3 x is to be

considered as a rectangle v iith length x and width 4/3, a rectangle which is then added to

the square of side x. Under this interpretation, the scribe's procedure amounts to cutting

half of the rectangle off from one side of the square and moving it to the bottom. Adding

a square of side b/2 "completes the square." It is then evident that the unknown length x

is equal to the difference of the side of the new square and b/2, exactly as the formula

implies (see figure 1). (Floyrup, pp. 38-65)

A second point is that this tablet, like %many other Babylonian tablets, consists of a

long set of problems, all of the same general type. The problems are usually stated in some

concrete form, as here in terms of the side and area o' a square. But can we consider them
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real-life problems? Would a quadratic equation like this one come out of a real situation?

It would seem that the quadratic problems here are just as artificial as the majority of

problems in current algebra texts. After all, most of the problems of this setand of

othershave the same answer. It thus appears that the tablets were used to develop

techniques of solution. In other words, the purpose of working through the various

problems on a tablet was not to determine the answer, but to learn various methods of

reducing complicated problems to simpler ones. Therefore, the mathematical tablets in

general, and the ones on quadratic equations in particular, were used to train the minds of

the future leaders of the country. It was not really that important to solve quadratic

equationsthere were few real situations which required them. What was important was

for the students to develop skills in solving problems in general, skills which would give the

students the power to solve the problems which a nation's leaders needed to solve. These

skills included not only the ability to follow well-established procedures (algorithms', but

also the ability to know how and when to modify the methods and how to reduce

complicated problems to ones already solved. It was not desirable in Babylonia for all

students to learn algebra; there was only a little room at the top of the society. Thus, the

study of algebra and, in particular, the study of quadratic equations were used as a filter to

determine who would be allowed to become the leaders of the future. An interesting

question to answer is what happens when everyone truly has the power of thought that

the study of algebra conveys.

Let us now move to China around the year 200 B.C. The most famous book of

Chinese mathematics written around that time is the Jiuzhang suanshu (Nine Chapters on

the Mathematical Art), a book which soon became a Chinese classic and which

prospective civil servants had to master in order to win a secure government job. Like the

Babylonian tablets, this book was a compendium of problems, presumably problems of the

type government workers needed to solve. It was divided into nine chapters, each dealing

with a different type of problem. And like the Babylonian scribes, the Chinese authors

included for each problem a detailed solution algorithm but did not discuss how the

solution method was derived or why it worked. That was evidently part of an oral

tradition, because later commentators often did suggest the possible reasoning of the

original authors.
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First, let us look at problem 26 of chapter 6, because we see here that "old

problems never die": "There is a reservoir with five channels bringing in water. If only the

first channel is open, the reservoir can be filled in 1/3 of a day. The second channel by

itself will fill the reservoir in 1 day; the third channel in 2 1/2 days, the fourth one in 3

days, and the fifth one in 5 days. If all the channels are open together, how long will it

take to fill the reservoir?" (Vogel, p. 68) (This problem, with only the numbers modified,

car be found in almost every algebra text to the present day. Look in your favorite one.)

A more interesting chapter for our discussion is chapter 8, which deals with the

solution of what we call systems of linear equations. Chinese mathematics was performed

on a counting board with small bamboo rods. thus, a problem involving a s /stem of linear

equations would be set up with the coefficients in different squares of the board and would

therefore appear as a matrix. The Chinese solution of these problems was by the method

now known as Gaussian elimination. Consider problem 1 from chapter 8: "There are three

classes of grain, of which three bundles of the first class, two of the second, and one of

the third make 39 measures. Two of the first, three of the second, and one of the third

make 34 measures. And one of the first, two of the second and three of the third make

26 measures. How many measures of grain are contained in one bundle of each class?"

(Vogel, p. 80) In modern terms, the problem can be translated into the system

3x + 2y + z = 39
2x + 3y + z = 34
x + 2y + 3z = 26

The Chinese procedure, clearly spelled out in the text, is to arrange the coefficients as a

matrix:

1 2 3

2 3 2

3 1 1

26 34 39

and then to operate on the columns. The first step is to multiply the middle column by 3

and subtract off twice the right hand column so that the first entry in the middle column

becomes 0. One then multiplies the left hand column by 3 and subtracts off the first

column so the first entry in the lett column becomes 0. The new matrix is then

0 0 3
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4 5 2

8 1 1

39 24 39

A similar procedure using the second and third columns turns the matrix into

0 0 3

0 5 2

36 1 1

99 24 39

from which one reads off the solution for z from 36z = 99 and then substitutes to

determine y and x respectively.

One interesting point here is that one might expect that such matrix manipulations

would sometimes lead to negative numbers, even if the ultimate solutions are positive. In

fact, problems are presented in this chapter where that happensand the Chinese give the

rules for operation with negative numbers so that the method can proceed. Neither the

Egyptians nor the Babylonians dealt with negative quantities at all. One system producing

negative numbers, arising out of a problem about yields of various types of grain, is

2x + y+ z= 1
3y+ z= 1
x + 4z = 1

or which the matrices are

1 0 2 0 0 2 0 0 2

0 3 1 -1 3 1 0 3 1

4 1 0 8 1 0 25 1 0

1 1 1 1 1 1 1 1 1

This example perhaps gives a pedagogical hint, coming out of history, a hint which will be

repeated in a slightly different context later. The negative numbers were first introduced

not to solve equations previously unsolvable, like x + 3 = 1, but in the process of

solving equations which had perfectly nice positive solutions via an algorithm which was

known to work. They were therefore not "made up" numbers, but numbers which had to

be used to continue the algorithm. It was thus necessary for the Chinese to figure out

how to operate with these numbers. But we should also note that although the problems

in this text are stated in real-world terms, they do not appear to be the kinds of problems
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which would actually arise in a real situation. Although it is not clear if or when Chine,:

civil servants would need to solve systems of linear equations, they, like their Babylonian

predecessors, were required to master the appropriate mathematical techniques.

We now jump forward to ninth century Baghdad. There the caliph al-Ma'mun had

established the House of Wisdom to which he called the best and brightest scientists of his

domains to begin to establish a scientific tradition in Islam. One of these scientists was

Mohammad ibn Musa al-Khwarizmi (780-850). As we noted above, al-Khwarizmi wrote

probably the earliest true algebra text, The Condensed Book on the Calculation of al -Jabs

and al-Mucabala. Note, of course, that our word algebra comes from al-jabr, which the

Latin translators left in that form when they translated the nook in the 12th century.

Why did al-Khwarizmi write his text? He explains in the introduction:

That fondness for science, by which God has distinguished the Imam

al-Ma'mun, the Commander of the Faithful, has encouraged me to

compose a short work on calculating by al-jabr and al-muqabala,

confining it to what is easiest and most useful in arithmetic, such as

men constantly require in cases of inheritance, legacies, partition,

law-suits, and trade, and in all their dealings with one another, or

where the measuring of lands, the digging of canals, geometrical

computation, and other objects of various sorts and kinds are

concerned. (Rosen, p. 3)

Thus, he was interested in writing a practical manual, not a theoretical one. As he noted,

"what people generally want in calculating ... is a number," the solution to an equation.

Thus, the text was to be a manual for solving equations, both linear and quadratic. Let us

consider al-Khwarizmi's solution of an equation of the form x2 + bx = c, an equation

similar to the Babylonian one considered earlier. Not surprisingly, given that Babylonia and

Baghdad are both in the Tigris-Euphrates valley, al-Khwarizmi's solution procedure is

virtually the same as that of his ancient predecessors. Like them, he gave the entire

solution in words and in the form of an example:

What must be the square which, when increased by ten of its own roots,

amounts to thirty-nine? The solution is this: You halve the number of roots,

which in the present instance yields five. This you multiply by itself; the

product is twenty-five. Add this to thirty-nine; the sum is sixty-four. Now

22



take the root of this which is eight, and subtract from it half the number of

the roots, which is five; the remainder is three. This is the root of the square

which you sought. (Rosen, p. 8)

AI-Khwarizmi differs from the Babylonians in that he explicitly justifies the solution

via geometry. The justification is essentially the same as the probable Babylonian one.

Namely, he begins with a square representing x2, and adds two rectangles, each of width

five (half the roots). The sum of the areas of the square and the two rectangles is then x2

+ 10x = 39. One now completes the square with a single square of area 25 to make the

total area 64. The solution x = 3 is then easy (see figure 2). Today, we would find a

second solution for this equation, x = -13, but in Islam of this time there were no negative

numbers. So for al-Khwarizmi, x = 3 is the solution. We should also note that in solving

quadratic equations, al-Khwarizmi did not always consider the unknown as the side of an

actual square; it could represent any sort of number.

Al- Khwarizmi's book contains much more than the solution of quadratic equations,

including material on manipulation with algebraic expressions, some explained by the use

of geometry. The text also contains a large collection of problems, many of which involve

these manipulations and most of which result in a quadratic equation. But although al-

Khwarizmi promised in his preface that he would write about what is useful, very few of

his problems leading to quadratic equations deal with any practical ideas. Many of them,

in fact, are just about numbers and begin with the statement, "I have divided ten into two

parts." There are a few problems concerned with dividing money among a certain number

of persons, but these are in no sense practical. For example: "A dirhem and a half is to be

divided equally among one person and a certain number of other persons, so that the share

of the one person is twice as many dirhems as there are other persons." [Rosen, p. 59] In

modern notation, the problem can be written as 11/2/(1 +x) = 2x. This becomes x2 + x =

3/4, whose solution is x = 'A, a strange answer to the question of how many "other

persons" there are!

Al-Khwarizmits work does have "applied" problems in it, but most deal with the

question of inheritance, the solution of which requires no mathematics more complicated

than linear equations but instead requires detailed knowledge of Islamic legacy laws. So

why do we need quadratic equations? Al-Khwarizmi seems to have no better answer than

the Babylonians. He could not think of any real-life examples which require them. His
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main goal, then, just like the Babylonian scribes, was to teach his readers methods to solve

mathematical problems, methods which could then be applied to other kinds of problems in

daily life.

Other Islamic mathematicians continued the work of al-Khwarizmi and developed

new algebraic techniques, many of which were not particularly aimed at solving real-life

problems but simply at following an idea to its logical conclusion. For example, al-

Khwarizmi demonstrated in his text how to multiply together polynomials of the first

degree. A mathematician of the 12th century, al-Samaweal ibn Yahya al-Maghribi, a Jew

from Baghdad who converted to Islam when he was about 40, developed the procedure

further to encompass polynomials of arbitrary degree. He also developed a technique for

dividing polynomials, a technique using a form of a counting board in which the numbers in

a given column represented the coefficients of a particular power of the variable. For

example, he showed how to divide 20x2 + 30x by 6x2 + 12. It is easy to see that this

division does not come out even, so al-Samaw'al showed how to continue the process

indefinitely. His "answer approximately" is given as

3-1 5(1)-61-1)--10(-1 ).13 (i+20(-1_1-26 1-1.)-40H
3 x 3 x2 X3 3 x" ' 3 xa x

Al-Samaw'al then notes that because there is a pattern to the coefficients of the quotient,

he can write out any particular term. In fact, he uses the pattern to write out the next 21

terms and ends with 54,613 1/3 (1/x20). Al Samaw'al used the notion here of

approximating quotients with partial results to develop the first theory of (infinite) decimal

fractions. We may draw a pedagogical hint from the history here: It is often a good idea

to let students explore the consequences of a particular technique, even far beyond any

immediate practical results.

We return to equations, but no more about quadratic equations. In fact, let us

move quickly to 16th century Italy and consider cubic equations. Although in the last

decades we have learned that Islamic and European mathematicians struggled for over fo

centuries to solve such equations algebraicallythat is, to find a cubic formulanone of

them succeeded. But once we see tne solution finally found by Scipio del Ferro around

1510 and first published by Gerolamo Cardano in his 1545 book, Ars Magna, sive de

Regulis Algebraicis (The Great Art, or On the Rules of Algebra), we may wonder why none
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of them succeeded. As is true for many problems, the solution is easy once it is shown to

us.

Let us consider the cubic equation x3 = cx + d. The key to the solution was to

consider this as an equation involving solids and to set x as a sum of two quantities, x =

u +v. Then, since x3 = u3 + 3u2v + 3uv' + v3 = 3uv(u+v) + (u3 + v2), it follows that

all we need to do is solve the two equations 3uv = c and u3 + v3 = d. These reduce to a

quadratic equation in u3, namely, u6 + (c/3)3 = du3, an equation whose solution is easily

found. It follows that the solution to the original equation is

3

=
\1(1)2 2 V1z12 3

We may ask the same question here as we did in the case of quadratic equations.

Did cubics arise to solve real-world problems? If we look in ancient sources, where the

Greeks solved a few specific cubics, or medieval Islamic sources, where Omar Khayyam

used the theory of conic sections to solve arbitrary cubics geometrically, we find that the

equations arose out of mathematical questions, like, for example, the classic problems of

doubling the cube or trisecting the angle. And even in Cardano's book, most of the

problems illustrating the rule are "artificial," even though a few are stated in real world

terms, mostly involving compound interest.

The cubic formula is generally not taught in schools today, although it does occur in

most algebra texts through at least the end of the 19th century. Its exclusion perhaps

should be reconsidered, not because one needs to solve cubic equations, but because, on

an elementary level, the formula led to the introduction of complex numbers and, on a

more advanced level, it was part of one of the strands leading to the development of group

theory. A glance at the formula from a modern perspective shows how complex numbers

come in. We noteand so did Cardanothat the formula does not seem to make sense if

(c/3)3 > (d/2)2? For example, what happens if we use this formula to solve the cubic

equation x3 = 1 5x + 4? In this case, although it is clear that x = 4 is a solution, the

formula gives us
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x = 312 4 5/- ...121 1- 3/2 -121

Cardano was not sure what to do with answers like this, but Rafael Bombelli some

15 years later wrote a new systematic algebra text in which he dealt with this question by

introducing complex numbers with their arithmetic defined by normal algebraic rules and

the obvious further rule that V-1)(V-1) = -1. Bombelli could then demonstrate that the

two cube roots in the solution above were in fact equal to .2 + V-1 and 2 -V-1, So that

the formula gave the desired answer x = 4. Thus, just as in the case of the negative

numbers introduced in China, complex numbers entered mathematics because they were

necessary to solve problems with known solutions which could be found through the use

of a valid algorithm. They did not arise from trying to solve x2 = -1; that equation simply

had no solutions.

Naturally, there is more to the story of complex numbers than this. Mathematicians

did not feel comfortable with their use until complex numbers were themselves given a

geometric interpretation around the turn of the 19th century. For now, we note that once

Lodovico Ferrari, a student of Cardano's, succeeded in solving fourth degree equations,

there was no further progress in the old problem of equation solving until the 19th century.

There were other important developments in algebra in the interim, of course, including the

introduction of modern notation and the study of the elements of the theory of equations

by Rene Descartes in the 17th century. But in our survey of algebra and its texts, we now

want to jump to the 18th century and consider the work of Leonhard Euler.

Euler's Introduction to Algebra was the most complete work of its kind,

summarizing all of the work accomplished in the solution of equations over the centuries.

The text dealt first with the properties of integers, fractions, irrational numbers, and

complex number's; it then continued with manipulation of algebraic expressions, including

material on converting fractions to infinite series and on the extraction of roots of

polynomials; Euler then went on to discuss ratio and proportion and concluded with a long

chapter on the solution of polynomial equations. All of this material, however, dealt with

numbers of one sort or another. The manipulation of symbols all came out of the standard

rules to' manipulating numbers, and the symbols themselves always stood for numbers.
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The central point to make about Euler's text, in contrast with those from previous

centuries, is the total lack of diagrams. Euler was the master analyst, and in his text on

Differential Calculus of 1755 he insisted that because it was a work on analysis it would

.contain no diagrams whatever. Analysis dealt with the manipulation of numerical

quantities, and although some ideas may have come originally from geometry, it is not

necessary to use geometry in a rigorous work on the subject. Euler considered his work on

Algebra a prerequisite to his calculus material, and so he continued this restriction. Thus,

for example, although he dealt with the method of completing the square in order to solve

quadratic equations, Euler's derivation of this method was entirely algebraic.

It is also interesting to see Euler's understandingor lack thereofof complex

numbers at this time, before there was a geometric representation. Euler introduces

imaginary numbers (e.g., V-4) as numbers which exist in our imagination, but which have

the property that, multiplied by themselves, they give negative values: (-4)( -4) = -4.

"Moreover," Euler continues, "as Va multiplied by Vb makes Vab, we shall have V6 for the

value of V-2 multiplied by V-3 and V4, or 2, for the value of the product of V-1 by V -4!"

(Euler, p. 43)

Mistakes notwithstanding, Euler's book provides a wide variety of problems to

illustrate various algebraic topics. In particular, he makes a special effort to find real-life

problems which result in linear and quadratic equations, many of which date from long

before his time and continue to appear in newer books. Let us consider a few:

One rents 25 acres of land at 7 pounds 12 shillings per annum; this land

consists of two sorts and one rents the better sort at 8 shillings per acre, the

worse at 5. Required the number of acres of the better sort. (Euler, p. 204)

The price of 1 acre of good land is 300 pieces of gold; the price of 7 acres of

bad land is 500. One has purchased altogether 100 acres; the price was

10000. How much good land was bought and how much bad? (From

Jiuzhang suanshu) (Vogel, p. 78)

A person rents 25 acres of land for £7 12s per annum; for the better part he

receives 8s. an acre, and for the poorer part, Es. an acre; required the

number of acres of each sort. (Brooks, p. 134)

Three brothers bought a vineyard for a hundred guineas. The youngest says,

that he could pay for it alone, if the second gave him half the money which
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he had; the second says that if the eldest would given him only the third of

his money, he could pay for the vineyard singly; lastly, the eldest asks only a

fourth part of the money of the youngest, to pay for the vineyard himself.

How much money had each? (Euler, p. 213)

Four men have money and intend to buy a horse. The first could buy it with

his own money plus 1/2 of that of the second, 1/3 of that of the third, and

1/4 of that of the fourth. The second could buy it with his own money plus

1/4 of that of the third, 1/5 of that of the fourth, and 1/6 of that of the first.

The third person requires his own money plus 1/6 of the fourth, 1/7 of the

first, and 1/8 of the second. Finally, the fourth requires his own money plus

1/8 of the first, 1/9 of the second, and 1/10 of the third. How much does

each have and how much does the horse cost? (From the Liber abbaci

(1202) of Leonardo of Pisa) (Boncompagni, p. 349)

A horse-dealer bought a horse for a certain number of crowns, and sold it

again for 119 crowns, by which means his profit was as much per cent as

the horse cost him; what was his purchase price? (Euler, p. 226)

Mr. Leslie sold his horse for $171, and gained as much per cent as the horse

cost him; what was the first cost of the horse? (Brooks, p. 219)

A jockey sold a horse for 1144, and gained as much per cent as the horse

cost. What did the horse cost? (Wentworth, p. 218)

Because not much has changed in what we can call elementary algebra since the

time of Euler, the proofs of the first three proposed theorems are complete. They were

intended to apply to elementary algebra, not to modern abstract algebra. For the fourth

one, however, we need to continue our survey and consider the great changes which took

place in algebra beginning in the 19th century, changes which led to our modern abstract

algebra. Although elementary algebra texts in the 19th century continued to deal with

much of the same material as had Euler, the continued search for solutions to polynomial

equations was one of the central factors which led mathematicians to greater abstraction,

in particular, to the concept of an abstract group.

Many mathematicians after the 16th century attempted to generalize the methods

of Cardano and Ferrari to solve algebraically polynomial equations of degree higher than

four. In the late 18th century, Louis Lagrange began a new phase in this work by
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undertaking a detailed review of these earlier solutions to determine why the method for

cubics and quartics worked. As part of this review, he became interested in the study of

permutations of the roots of an equation. Although Lagrange ultimately neither found a

formula to solve the fifth degree equation nor proved that no such formula existed, Niels

Henrik Abel accomplished the second option in the 1820s, using Lagrange's ideas on

permutations. Evariste Galois shortly thereafter again made use of the set of permutations

of the roots of a polynomial to determine the conditions under which a polynomial equation

could be solved algebraically.

It was Arthur Cayley who first noted in 1856 that one could generalize Galois'

notion to any set of operations on a (finite) set of quantities. Cayley thus defined a group

to be

a set of symbols, 1, a, /9, ... all of them different, and such that the product

of any two of them (no matter in what order), or the product of any one of

them into itself, belongs to the set...It follows that if the entire group is

multiplied by any one of the symbols, either on the right or the left, the

effect is simply to reproduce the group. (Cayley, p. 41)

Cayley assumed that the number of symbols was finite and that multiplication was

associative. He then introduced a group table to illustrate the multiplication rules.

The theory of groups had other roots as well, in particular in number theory. Thus,

Carl Gauss had studied both quadratic forms and residue classes and had noted that many

of the properties of both under composition were identical. Other mathematicians noted

similar properties in other sets under composition. But it was only in 1870 that Leopold

Kronecker finally saw that an abstract theory could be developed out of the analogies.

The very simple principles on which Gauss' method [of composing quadratic

forms] are applied not only in the given context but also frequently

elsewhere, in particular in the elementary parts of number theory. This

circumstance shows ... that these principles belong to a more general,

abstract realm of ideas. It is therefore appropriate to free their development

from all unimportant restrictions, so that one can spare oneself from the

necessity of repeating the same argument in different cases....The

presentation gains in simplicity, if it is given in the most general admissible

manner, since the most important features stand out with clarity. (Wussing, p. 64)
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Kronecker thus began to develop the simple principles of the theory of abelian

groups and went on to prove what we now call the fundamental theorem of Abelian

groups.

It only remained for someone to unify the notions of group appearing in these areas

and in gecmetry as well. Not surprisingly, two different mathematicians accomplished this

in 1882Walter von Dyck and Heinrich Weber. And in 1895, Weber published the

material on groups in his 1895 text, Lehrbuch der Algebra. It is with this publication that

the abstract concept of a group can be considered to have become part of the

mathematical mainstream. Weber's text also included the definition of a field, again based

on many examples that had been considered over the 19th century. Virtually all of the

examples of groups and fields;- however, were still related one way or another to the real

and complex numbers.

Abstraction increased dramatically in the 20th century as mathematicians began to

see examples of groups and fields, as well as rings and algebras, in more and more places

in mathematics, well beyond the realm of "numbers". But it was Emmy Noether who

taught the mathematicians in Gottingen in the 1920s that algebra was central to

mathematics, that its ideas extended to all areas of the subject, and that an abstract

approach was the way to look at algebraic concepts. In fact, Pavel Alexandrov noted in

1935 that it was Emmy Noether who

taught us to tnink in terms of simple and general algebraic concepts

homomorphic mappings, groups and rings with operators, idealsand not in

cumbersome algebraic computations; and she thereby opened up the path to

finding algebraic principles in places where such principles had been

obscured by some complicated special situation. (Dick, p. 158)

Saunders MacLane has even asserted that "abstract algebra, as a conscious discipline,

starts with Emmy Noether's 1921 paper, 'Ideal Theory in Rings.'" (MacLane, p. 10)

The first "modern" text in algebra, van der Waerden's Modern Algebra, which

appeared in 1931, was heavily influenced by Emmy Noether. It is an enlightening exercise

to compare this work with algebra books of just a few decades earlier to see the profound

influence that she had on our present conception of algebra. Nevertheless, even Noether

realized that one needs to be familiar with a wide variety of concrete examples from all

parts of mathematics before one can understand the value of the generalizations she was

30

34



able to make. Our fourth theorem is thus proved. Its immediate corollary is that one cannot

understand the modern algebra of the 19th and 20th centuries without mastering the

algebra of previous centuries and, indeed, without understanding material from other

branches of mathematics as well.

There is much more one could say about the history of algebra and its teaching in

the 20th century. One finds, however, that a typical 20th century elementary algebra text

is not far different from the text of Euler, except that it usually covers some analytic

geometry and leaves out much of his more advanced material on equations. Naturally, 20th

century university texts in abstract algebra are far different, because they all owe much to

van der Waerden and Emmy Noether.

I hope that the historical theorems set out at the beginning are useful in the task of

reforming the teaching of algebra and that the lessons of history will serve as a guide in

this important undertaking.
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Long-Term Algebra Reform: Democratizing
Access to Big Ideas

James J. Kaput
University of Massachusetts at Dartmouth

The way curricula are currently specified, 'teaching algebra' is like teaching
people to speak by making them move their mouths in certain positions over
and over. Ridiculous! We don't teach people to walk by moving their legs for
them, or forcing them to put their feet into certain positions: walking is an
expression of the urge to be elsewhere. John Mason

Overarching Curricular Goals: Democratize Access to Big Ideas and
Prepare for Continuing Change

Discussion of the reform of algebra can, and all too frequently does, reduce to

quibbling over details ("Is rationalizing of denominators still important?") that probably

don't matter given the scale of reform needed to deal with the large scale failure that

school mathematics is. Some of the old arguments against change, especially at the

detailed level, get harder to pose when we change the terms of the debateand it is time

to do exactly that. In order to deal with the structural factors that limit student access to

the big ideas of mathematics, we must attend to the global structure and content of the

larger curriculum in which algebra plays an important part. We cannot discuss algebra in

isolation from its curricular context.

Replace the Layer-Cake by a Strands Organization of the Curriculum: Respect the
Intrinsic Embeddedness of Algebraic Activity

The Standards leave the current global structure of the mathematics curriculum

largely untouched, especially at the secondary levelthe arithmetic, algebra, geometry,

precalculus, calculus layer-cake, while enriched, is intact. "This layer-cake approach to

mathematics education effectively prevents informal development of intuition along the

multiple roots of mathematics. Moreover, it reinforces the tendency to design each course

primarily to meet the prerequisites of the next course, making the study of mathematics

largely an exercise in delayed gratification. To help students to see clearly into their

mathematical futures, we need to construct curricula with greater vertical continuity"

(Steen 1990, p. 4).
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In addition to the layer-cake problem, we need to confront the basic fact that the

secondary school mathematics needed in the 21st century will be drastically different from

today's, encompassing many more complex and abstract ideas than we now consider

critical. It is useful to recall how the mathematics of the 18th and 19th centuries is

subsumed by the mathematics of today as special cases of more general and abstract

ideas. The process of growth has not stopped, it is accelerating. As a consequence, the

elementary and middle school curricula will need to do far more for children than our one

curriculum does now, which is to prepare the college-intending for the top of the layer-

cake, formal calculus, and the mathematics of classical physicists. Other students, who

cannot survive the rigors of an abrupt introduction to character-string manipulation at

puberty, have largely been ignored, shunted into curricular and occupational dead-ends.

With Steen and others, I suggest a strands organization, where major ideas weave

through many grade levels, frequently interweaving with one another to create a rich

fabric, but one that has a direction, a natural flow, from the wide watershed of concrete

experience to generalizations and abstractions, from informal and language-based

representations to more formal representations. Filters are usually built using layers, while

strands provide a natural flow, gradually drawing into mathematics ever more diverse

experience. Aspects of this approach were suggested by Jerome Bruner about three

decades ago (Bruner 1960), but the new ingredient, beyond stark necessity, is increased

emphasis on the need for vertical coherence and integration among strands. We have seen

how easily Bruner's spiral sags into a circle if we do not attend to building authentic

progression of mathematical content.

So what are candidates for strands? Some very thoughtful mathematicians have

already offered suggestions in the book cited above: quantity, shape, uncertainty,

dimension, and change. Interestingly, algebra does not appear in the list, but, rather, is

implicitly included as an expressive language in the development of the strands listed.

Whatever the strands, they should begin in elementary school and contribute to a core

mathematical experience for all students up through the first years of secondary school,

with variations expected and encouraged. For the latter years of secondary school, we

should expect real differentiation and choice. The big ideas will lend a coherence and

purpose to K-8 mathematics that is not currently present, even in reform documents.

Although, to be fair, recent NCTM Standards addenda are beginning to introduce some
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major ideas at the lower levels, although without much technological support and in a

piecemeal way.

Planned variation at grades 11 and 12 will serve several functions beyond offering

choice to different students with different wants and needs. The high school curriculum

can become a place for genuine intellectual expression on the part of teachers, with

opportunity and reward for innovation. High school mathematics at this point suffers the

profound alienation of an aged assembly line that has outlived any productivity it ever had.

Teachers burn out in huge numbers after only a few years of teaching the unwilling the

unwanted. The carrot is wilted and the stick doesn't work. But curricular diversity not

only plays to a traditional American strength, enlarging the space in which inventiveness

and choice n 2n thrive, but it can also be made to fit the coming telecommunications

revolution. Politicians and policy people speak of choice, but there is not much curricular

choice: It's choice between factoring x2-4 and factoring x2-9. We need a new, more

diverse curriculum deliberately designed to grow and change.

Eliminate Algebra as a Set of High School or Early College Courses and Integrate
the Basic Ideas of Algebra into K-8 Mathematics"De-coursify Algebra"

The mathematics of all content strands should grow out of acts of sense-making.

Students develop mathematical. ideas in order to render one's experience knowable and

communicable. They build and refine models that capture experienced patterns and lead to

new patterns at higher levels of abstraction. But they begin by tapping fundamental

intuitions and buiiding on natural ways of apprehending, organizing, navigating and

communicating. The models are developed using ever more powerful and systematic

languages and representations, beginning with physical materials and iconic and graphical

forms but leading to an array of efficient languages that include potent syntactical

structure embodied within computational media. This means, among other things, algebra

should be learned as a sense-making tool throughout elementary and middle school. The

two sides of algebra discussed below (algebra as an expressive language versus algebra as

a set of structures) can both be addressed in K-8. Indeed, grade 5 materials from some

n w curriculum development projects include structural algebra (Romberg, in press).

Relative to algebra as a language, we can informally distinguish two levels of

syntax. One is associated with writing and parsing expressions (mainly functions) or

simple equations. The other is associated with the transformation of expressions or
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equations into different forms (often, but not always equivalent forms). The former level

should be the province of grades K-6, the latter for grade 7 and beyond (but see the

suggestions regarding learning-as-needed skill modules below). Much curricular material

has been produced over the years in the United States and elsewhere, although it has not

been integrated with a full strands-oriented, big-ideas curriculum.

We need to develop algebra as a tool for representing rates and differences of

quantities, and the relations with accumulations of those varying quantities. We have

tended to treat early algebra apart from the mathematics of change, more in the spirit of

the uses of algebra that preceded the development of calculus than in the spirit of the uses

that developed later. The rhetorical roots of algebra, with their classical problem types

(Katz, this volume) may not be the best context for the curriculum of the next century. We

may need to concentrate on more recent applications of algebra to build toward the big

ideas that should be part of the mathematical experience of all students. An important

factor in this reconsideration of the place of algebra relative to the mathematics of change

is the ability of technology to provide numerical and graphical solutions to difference and

diff rential equations as well as the reverseto differentiate "totals" data, providing rate

information in graphical and numeric form.

Eliminate Calculus as a Capstone Course for the Elite by Building a Strong Change-
strand into K-10 Mathematics: Calculus for All

If, politically, algebra for all is attractive, why not calculus for all? And then, why

not serious mathematics for all? More importantly, the mathematics of change can be a

prime context for developing algebra, just as it was historically (Kaput 1994). We should

caution, however, that by calculus I do not mean the kind of formal technique-oriented

exercise represented by traditional university calculus, but a broader and deeper study of

the relations between varying quantities and the accumulation of those quantities,

beginning with concretely based numerical and graphical problems and progressing to more

algebraically represented or representable problems. (See the next section.)

Bring New Topics Into the Core Grades 9-10 Curriculum, Including Linear Algebra,
and Especially a Wider (Iterative) Mathematics of Change, of Uncertainty, of Space,
of Proof

Reconsidering the place of algebra in a revised core curriculum requires us to

acknowledge (1) the changing nature of school algebra and (2) the changing curricular
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context for that algebrathe other topics that may deserve a place in the grades

immediately following middle school. While the languages of algebra include the basic

character-string system, coordinate graphs and tables, they should not be limited to the

traditional relations over sets of real numbers and accompanying coordinate graphs. They

should include matrices and variables over non-numerical objects and operations on them

of the sort traditionally associated with abstract algebra (strongly concrete to begin with,

of course, as in the Connected Mathematics Project middle school materials originating in

the Dutch curriculum; Romberg, in press). In addition, the languages of algebra, already

established in their basic representational role in grades K-8, should be applied to the

different and evolving ways of representing statistical information as well as data with

other structured forms. Indeed, the basic idea of data structure is likely to be important in

the next century. Multidimensional and dynamic graphics will likewise grow in importance.

Already, we have seen how spreadsheet representations have heightened the importance

of iterative and recursive forms for representing functions.

We can expect similar evolution in the mathematics of space, leading to geometry

on hyperboloids or ellipsoids, and Euclidian geometry of many dimensions, and fractional

dimensions. It is easy to imagine students building a construction and then varying the

curvature of the space in which it appears. Or examining finite geometries. Or studying

transformational geometries from an algebraic perspective using appropriate computer

software. Students are not learning 2-D Euclidian geometry today. Indeed, they are more

often than not being given a lifelong inoculation against geometry. They should be given

the opportunity to learn basic ideas of analysis in the context of the mysteries of the

infiniteespecially if these mysteries had been explored on occasion in earlier grades,

when, as any parent will attest, kids approach them with almost infinite intensity and

wonder.

Students need to be put in the position where conjecture, argumentation, and proof

occur as r uthentically experienced means for determining what is true. It is evident among

today's students at all levels, including mathematics majors at elite institutions (Artin, this

volume), that the idea and purposes of proof are ill-understood.

Finally, we should continue to evaluate the central concepts that will help organize

the important ideas of school mathematicsfor example, the ideas of sensitivity, orbit,

closeness, order, optimization, randomness, quotient and product structures, sameness of
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structures, generators and independence, algorithm, robustness, computability, model.

Further, we need to organize these central ideas. Some are algebraic in character, some

topological, some computational, some statistical, while others, such as orbit and model,

cut across or transcend mathematical topics. The importance of selecting and organizing

key organizing principles grows as students' mathematical experience diversifies.

Create a Mathematics Elective Structure for Grades 11-12 to Confront Both the
Diversity of Students and the Diversity of Useful and Important Mathematics

The answer to student diversity is curricular and pedagogical diversity. There is no

shortage of mathematics for students to explore, and clearly, no student will be able to get

a full sample in the core curriculum through grade 10. One answer to both sides of the

diversity challenge is an elective structure for mathematics in grades 11 and 12, coupled,

as argued below, with an incentive structure to promote innovation and dissemination.

Rather than present a wide-open menu, we will need to organize the offerings (a) by

student objectives (e.g., college-intending versus vocational) and lb) by key mathematical

ideas. Within the college intending and vocational categories, further subdivision is likely

to be appropriatefor example, for college-intending, technical/business/nontechnical

might suffice. Obviously, the college admissions process will need to be adjusted,

although not drastically. The most important and immediate adjustment needed is in the

content of what is tested, for both college admissions and introduction to the world of

workaway from surface computational skill and toward reasoning and problem solving.

Later, the content of introductory college mathematics courses will need to be revised.

However we choose to change, to stay in the rut we inherited is simply indefensible.

Create a Broadly Available Modular Skills-on-Demand System

Currently, our algebra courses have manipulative skills at the center and reasoning

and applications at the edges. Most of the skills have special uses among particular

subgroups of the population later in their education or careers. We need to break the

paralysis that attends the entirely legitimate worry that students will be seriously harmed

by lack of particular skills. One way to do this is to make those skills available, using

Intelligent Computer Aided Instruction, on a universal basis. Learning is always more

effective when its purposes and uses are experienced as immediate. The technology of

adaptive testing and ICAI is ideal for delivering particular skills on an inexpensive flexible

basisin connection with college courses, in the service of vocational training in the
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private or public sectors, or in connection with other K-12 courses (including nonmath

courses). Well-designed modules might serve different purposes depending on who uses

them.

Learning Algebra as an Expressive Language: Algebraic Objects That
Do Something

The computational medium allows us to reverse the inferential arrow from

experience to algebra. We now can use algebra to control a physical phenomenon (or a

simulation of such), thereby generating a regularity in physical experience, a phenomenon

in some reference field. This appears to be a new use of the medium, although it bears

close relation to the idea of programming. It is not ybt obvious how to exploit this

opportunity, but it seems that one can apply one's knowledge of the semantics oc the

reference field to create, manipulate or make judgments about algebraic objects. For

example, if we are modeling the position of swimmers in a multi-lane swimming pool, what

does it mean algebraically to have a temporal versus a spatial headstart, or to travel in

opposite directions? Thus, for example, a student might determine the distance between

two swimmers at a certain point, determine the difference in their speeds, and then use

that "closing speed" to segment the distance to find the catchup time. The key is that

performing actions on algebraic expressions, as well as setting up equations and

inequalities, take on meaning in the reference field(s) for algebra. They also afford rich

opportunity for conjecture and experimentation that exploit the student's knowledge of the

reference field to make judgments about his or her algebraic actions.

Using algebra to control phenomena involves a different side of language, different

from the descriptive or representational side and more on the expressive side. It is the side

that embeds language in action, in activity. Indeed, the phenomena that result from

executing or running algebraic objects can be thought of representing the algebra rather

than the other way around.

Some Enabling Goals and Actions

Most of the following goals relate to one or more of the following three

assumptions: (a) big ideas take a long time to develop and interconnect so should be

approached as curricular strands, (b) we need to take technology much more seriously than

we have previously, and (c) diversity and richness in curriculum is to be valued over
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uniformity and linear sequencing. Much of what is discussed here is not strictly confined

to algebra, but bears directly on algebra reform nonetheless.

Change the Prevailing Conceptions of Algebra, Drop the Idea of Algebra as a
Course, and Begin Thinking of Symbolic Algebra as a Particular Form of
Representation Among Others

We need a better view of school algebra out there among the lay population (this

includes politicians, teachers, school administrators, even some mathematicians). Perhaps

we should begin thinking of traditional symbolic algebra as but one among many means for

expressing quantitative relations, each with its own strengths and weaknesses (Confrey

1992; Dennis & Confrey, in preparation). Indeed, while strides are being made based on

new developments to increase the public's awareness of mathematics as a live and

important part of our culture, it is at least as important to widen our collective conception

of traditional subjects. Subjects such as algebra and calculus are identified with the

narrow technique-oriented course experiences by those who have taken them, and as

some kind of unattainable priestly knowledge by those who have not. Of course, neither

identification is close to the truth. Long-term success of deep reform of the sort being

advocated in this paper requires this cultural transformation.

Move From Layer-Cake Reform to Strands-Systemic Reform

Historically, we have tended to approach the reform of curriculum under the

influence of the inherited layer-cake mentality and from the perspective of the layered

communities that constitute the educational establishment. Layer-cake reform implies

more layer-cake curriculum. We need to take a much more vertically holistic view of

mathematics learning, and a view that suggests building "vertical teams" of innovators

rather than grade level-based teams. While we have intended to think "systemic"

horizontally, we should probably begin to think in terms of the vertical dimension as well

(as has the UCSMP). We may also want to think about developing multiple strandsthe

more connected the fabric, the stronger it is. More generally, long-term, large-scale

curriculum development is in order. In addition, we need new mechanisms for curriculum

development (see the discussion of incentive structures below).

The Case of Calculus Reform. The calculus reform initiative offers perhaps the

clearest example of how to avoid serious change of the larger K -16 system. While leaving

as much educational structure untouched as possible, work on the top layer, but, in the
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words of every rock-climbing instructor, "whatever you do, don't look down!" I should

note, however, that as long as we can avoid saying that reform of calculus is now

"complete," we may be able to use the considerable good work that has been done to

revise how the formal side of calculus is handled across a wider range of age levels.

The Case of Algebra. The background assumption of most of the algebra reform

talk, including "algebra-for-au" talk, remains that algebra is a series of high school courses

that either we must "fix" or do a better job of preparing for. I believe we need to go

beyond pre-algebra in the 7th grade followed by some kind of algebra experience in 8th

grade. As with calculus, much of the recent good curriculum development work could

serve to help integrate algebraic reasoning into the earlier grades. And some of that work

(e.g., in Romberg's Wisconsin/Utrecht middle school project) is already including some

algebra in earlier grades.

The Case of Arithmetic and Rational Number. We have had a long history of

innovating in elementary arithmetic independently of our innovating in higher mathematics.

But, in a strands approach, the mathematics of earlier and later grades are not

independent. The "change" problems of K-2 mathematics need to be seen as part of the

change strand and generalized. This is the approach taken in the new TERC K-5

"Investigations" materials (Russell, in press). The same could be said of the extensive

work on rational number and proportional reasoning which until recentlywith the

exception of some partial attempts by Karplus in the early seventiesignored the function

idea and the notion of linearity.

Get Serious About Technology!

William Blake spoke of the most powerful constraints of all, those of the

imagination"mind-forg'd manacles." Most technology uses that have been part of the

reform discussion have centered on improving what we are now doing rather than

changing in fundamental ways what we are trying to do. Following are a few illustrations

of technology applications that have not appeared in NCTM Standards discussions to date,

and that are less defined by new mathematical content than by the new potentials of the

technologies themselves. We will concentrate on uses of technology that have not been

widely discussed, so we will not pursue some now-familiar applications such as hot-

linkable representations, off-loading of routine numerical or symbolic computations, and

enhanced actions on graphical objects.

41

45



Acknowledge the Fact That the Medium for the Mathematics of the Next Century

Will Be Computational. We are at the threshold of a transformation of the nature of

mathematics. Soon, the question regarding whether or not to use computational media will

be moot. You can't study dynamical systems, create simulations, or manage large

amounts of data in inert media. How many people walked to the Algebra Initiative

Colloquium conference? We need to reorganize our expectations and ways of thinking

about the content of mathematics to make room for the dramatic changes and expansion in

mathematics that will be part of tomorrow's world, our students' world. The two orders of

magnitude increase in transportation speed have been incorporated into our travel

expectations, but such technological improvements have not been incorporated into our

educational expectations.

Get Systematic in the Pursuit of New, More Learnable Representations of Important

Mathematics - Technology Has One of Its More Important Applications in This Area. The

fact that average youngsters can do multiplications that once required Roman specialists

using calculi cannot be attributable to improvements in nutrition or improvements in the

gene pool. It is directly attributable to the improvement in the notation system that

functions as a cognitive amplifier, a cognitive technologyjust as other technologies

amplify or modify other human powers. We should examine ways to do the same thing for

calculus. Graphically oriented, approaches might serve to democratize access to such big

ideas as the mathematics of change, especially if they can be hot-linked to student

controllable phenomenaeither simulations or real-time data collection as with MBL

devices Illemirovsky 1993; Thornton 1993; Kaput, in press). Given that much algebra

instruction has been aimed at preparing for calculus, the implications of such changes for

algebra are considerable.

Concretization of the Abstract. In mathematics education we have only begun to

exploit the varieties of new representations that can assist visualization, but scientists in

virtually every field are rapidly developing new ways of seeing. Again, the underlying

strategy is to employ the human brain's well-developed natural powers.

Changing Relations Between the Particular and the General. Jere Confrey's

Function Probe software (Confrey 1993) includes a screen calculator that keeps a record of

keystrokes that one can edit by substituting a literal for a number, so that a particular

numerical computation becomes a function of one variablewhich can then be used to fill
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in a table, be graphed, and so on. Several geometry software environments store one's

constructions as replayable, and even editable, procedures. One acts on particulars, but a

generic object results. It is now commonplace to vary the shape of a function's graph and

see its parametric representation change as one performs the transformation. These are

simple examples of the new relations between the particular and the general that

computational media can provide.

Change the First Two Years of Collegiate Mathematics to Match the New K-12
Curriculumthe Strands Should Continue

The colossal waste of "remedial mathematics" described earlier should not be

allowed to continue, especially at the 2-year colleges. The curriculum of the first 2 years

of college mathematics should embody the same principles that the new grade 10-12

curriculum does. And it may need tothe consumer-oriented attitude of admissions

offices has not yet reached into mathematicsour current curriculum of the first 2 years

embodies the same choice that is available in the high school math curriculumabout the

same as Henry Ford offered of the model A: "You can have any color you want, as long as

it's black."

Stepping Back for a Wider Perspective

Rethinking the place of algebra in school mathematics requires us to take a longer

view of the evolution of algebra and its relations to the evolving media in which it has been

and can be expressed. In order to do this, we need to get some sense of the different

sides of algebra as well as the different characteristics of the media in which we do

algebra. There is a tendency over time toward representational pluralism in

mathematicshistorically, we find ever more diverse ways of representing its concepts.

Computers, especially with their powerful graphics systems, aid and abet this tendency.

Historically, algebra was a character-based symbolic system designed for the 'efficient

expression of, and action on, quantitative relationships and patterns, but is now a web of

representation systems that are physically linkable in the computer medium. Hence the

language side of algebra is expanding, mainly in graphical-visual ways, but more on this

later.

Form/Content Duality in Mathematics and Algebra

Algebraic reasoning has a dual nature, reflecting a duality of mathematical thinking

more general'y. Mathematics is both a web of languages, for the expression of pattern,
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structure and argument (Steen 1988) as well as the content, or referential object, of that

pattern, structure and argument. The relation between these two aspects is complex,

recursive, and varies according to the nature and purposes of the mathematical activity at

hand. That is, it is not fixed. We can focus explicitly on the structure and treat it as the

referential object of expression (as when we construct, say, an abstract quotient object of

some kind). On the other hand, the patterns expressed by mathematics are typically used

as the means to express other mathematics (Kaput 1987) (as when we say Z is a principal

ideal domain, or when we define a functor from one category to another), or to express

other patterns in experience (as when we use the factor-structure of Z to decide which

sets of marbles might be arrayed as rectangles). Moreover, we may switch between

usages with the same fluency that we switch between looking through a window and at a

windowoften with the same lack of outward evidence. The difference is a subtle, but

real change within the actor. Sometimes we use the symbols or representations as things-

in-themselveS, with their own formal rules and structures, and sometimes we see through

them to other patterns in our experience. And if this complexity weren't enough,

mathematics constitutes many different languages and, of course, many different patterns

and layers of patterns. Real mathematical thinking usually involves rapid navigation among

all these.

Reconsidering Relations Among Arithmetic, Quantitative Reasoning, and Algebra

We have had a long history, dating back to the 18th and 19th centuries, of

regarding algebra as generalizing the properties of arithmetic. And it certainly does.

Importantly, this historical and logical /formal relationship between arithmetic and algebra

has also been the basis for the curricular relationship. However, this relationship deserves

another look, particularly in view of what we are coming to learn about the cognitive

foundations of each in quantitative reasoning (Greeno 1989; Greer, in press; Resnick 1992;

Thompson 1993, 1994). In order to make tense of the analysis, we need to distinguish

between arithmetic and quantitative reasoning.

I define arithmetic to be computation with numerals, usually organized by the

structure of the (now) standard numeration system. Much of our elementary mathematics

curriculum is centered on teaching arithmetic in the sense of this definition. Abstract

quantitative reasoning involves what we usually take the numerals to stand for, as when a

child determines how much more 33 is than 18 by counting up from 18, perhaps using
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fingers to help monitor the results. Another quantitative reasoning approach might involve

separating the difference into the 10-part between 20 and 30, and the two smaller parts of

2 and 3 on either end of the difference, and combining these mentally. An arithmetic

approach would be to write the 33 18 subtraction statement, probably in vertical form,

and then use a standard subtraction algorithm to get the result. The key is that the

arithmetic approach is mediated by one's knowledge of the rules for operating on the

symbols. While a shorthand way of phrasing the distinction might be that quantitative

reasoning is "mental arithmetic," I would want to exclude that type of mental arithmetic

that involves mentally manipulating images of the numerals.

For an abbreviated characterization of situation-based quantitative reasoning (a full

exposition is well beyond the scope of this paper), I paraphrase P. Thompson (1993,

1994). (Situation-based) quantitative reasoning is the analysis of a situation into a

network of quantities and quantitative relationships. Quantities are conceptual entities that

are constituted in people's conceptions of situations. A person is thinking of a quantity

when he or she conceives a quality of an object or event in such a way that this quality is

measurable or countable. A quantity ... is composed of an object, a quality of the object,

an appropriate unit or dimension, and a process by which to assign a numerical value to

the quality. For example, we might think about heights of people we know, speeds of cars

we see, ride in or drive, or masses and densities of blocks of wood. While we can in

principle assign a numerical value to a quantity, we needn't do so in order to engage in

quantitative reasoning. For example, I might make ordering-judgments about the

differences between my height and that of my brother and sister without actually

performing measurements or looking them up in medical records. This would constitute

primitive situation-based quantitative reasoning.

I offer the following assertion, put in simplest terms: Both arithmetic and algebra

provide formal means for the externalization of quantitative reasoning. In the case of

arithmetic, these means serve the purpose of computing or deriving specific values of

quantities. In the case of algebra, these means serve the twin purposes of (1) generalizing

and abstracting quantitative relationships and (2) reasoning with the external

representations of those quantitative relationships. In some cases, the reasoning is

directed toward finding particular values (as in equation solving), while in other cases it is

directed toward making explicit certain relationships that were previously implicit by

45

49



changing the form of algebraic expressions or equations/inequalities. The changed forms

better support comparisons or efficient computation.

While our current ct., iculum assumes arithmetic must precede algebra, so that it

can serv3 as the basis for algebra's more general rules, we should consider the possibility

of building algebraic reasoning more directly out of quantitatiye reasoning. Currently, we

use quantitative reasoning mainly as an excuse to employ arithmeticwe create situations

where the student must build quantitative relationships so that the given numerical

information can be input into these relationships and a computation performed leading to a

numerical answer (although sometimes the situation-based reasoning leads to abstract

quantitative reasoningmental arithmeticrather than arithmetic). However, these

problems have been peripheral to the main purpose of the early mathematics curriculum,

which is to. develop knowledge of arithmetic. Later, much later, we introduce algebra as

generalized arithmetic in order to legitimatize algebra's syntactical rules, train students in

the use of these rules, and then return to the use of algebra to model quantitative

situations, usually in order to determine some value that "solves" the problem (algebra in

its ancient sense) rather than to provide a general model to reason with.

The early history of algebra, predating the development of sophisticated arithmetic

systems is revealing. Essentially all the problems that are associated with the early

rhetorical forms of algebra were basically quantitative reasoning problems. However, it

was not until Vieta that the external symbolism reached a point of supporting reasoning

(Klein 1968). Until then, various techniques were used to off-load the complexity onto

some extracortical devices, including geometrical figures, and the generality of either the

problems attacked or the techniques used was quite limited. Algebra is much more today,

not merely due to the development of reliable syntax and number systems, but also

because of the development of Western science, the goal of formalizing patterns in data,

and the emergence of algebra as the language of science (Bochner 1966).
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Appendix
Ten Reasons Why Early Algebra Makes Sense

1 Tracking: Algebra is currently the pfimary vehicle for the tracking system at the
upper middle and high school levels. The closer algebra is to graduation, the more
effectively it can act in its negative filtering role.

2. Algebra as a course is simply wrong: As an expressive set of languages it needs to
be used for many years across many situations, as a means to extend and
generalize quantitative reasoning and to serve the development of multiple strands
of mathematics. As an important set of structures, it should grow out of and help
contextualize arithmetic, and later (in high school) should grow out of work with
polynomials, matrices and other objects in a spirit of conjecture and justification,
setting the stage for further learning at the college level. The intrinsic
embeddedness of algebraic reasoning is violated by treating it as a course.

3. Technical education: The same general quantitative sense-making abilities fostered
by a strands approach, with elementary algebra integrated throughout in K-8 (e.g.,
in change, statistics, space), would serve both the needs of a technical work force
and the college-intending. The differences that would emerge at the secondary
level would be largely in the degree of formalization of the concepts and intuitions
already established. The college-intending would have these concepts increasingly
formalized and extended in the language of mathematical formalisms, hopefully
connected with important scientific ideas. In technical education, we would be
freed of the need to treat algebra and other mathematics in formal ways and instead
concentrate on embedding those ideas in different concrete situations.

4. To prepare students for the 21st century we absolutely need the curricular space
that is now locked up by the 19th century high school national curriculum.

5. We absolutely need space for a green and growing edge at the high school level:
We need to build continuing renewal and diversity into the upper levels of the
curriculum.

6. Reform is cumulative: To do what needs to be done at the high school level, we
must begin serious reform early (as with the Cognitively Guided Instruction Project)
and keep building in a longitudinally coherent, strands-oriented manner.

7. Early algebra has worked in other countries (e.g., Russia, Eastern Europe, and the
Netherlands).

8. Generalizing and expressing generality is an inherent part of human
knowing/learning from the beginning, and language learning is easier for younger
kids than older kids.
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9. New uses of technology, graphical and symbolic, make many new representations
and approaches possibleand necessary. These new approaches offer the
opportunity to rethink the place of routine skill development as well as the degrees
of symbolic formalization of major mathematical ideas. New principles become
available for organizing the curriculum.

10. We need to balance the need for deep long-term change with shorter term risks and
constraints. A major risk of tinkering at the margins is to squander the spirit of
reform and to ratify for the next generation a curriculum that is only a minor
improvement over what we have today. We have mounting evidence that young
children can learn much more mathematics than they now are asked to, and we
know they will need to know much more in the next century.
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Algebra in the K-12 Curriculum
Gail Burrill

Whitnall High School, Greenfield, Wisconsin

A response to
Long-Term Algebra Reform: Democratizing Access to Big Ideas

Picture a student in a mathematics class todaya student whose career goals will

be achieved through a technical school or community college, or a student who intends to

enter the work force after high school, or a student who wants to become an

engineer; a student who has to live and work in a world of information and technology.

What algebraic skills and concepts should each of these students know and be able to

use? Algebra has always been prominent in mathematics. It has not always been

accessible to all, and there have been many recent efforts to address issues raised by

technology and equity. In his paper, Long-Term Algebra Reform: Democratizing Access to

Big Ideas, presented at the Algebra Initiative Colloquium, Jim Kaput states that

"conferences of this sort do not answer questions.... they set agendas."

As the mathematics community begins to set an agenda for algebra in the mid-

1990s, there are issues that need to be raised from the perspective of a secondary

classroom teacher. The reform of the algebra curriculum is embedded in the reform of the

mathematics curriculum; reform efforts in mathematics are moving toward building vertical

knowledge instead of grade level knowledge, strands instead of courses. Such reform

efforts are suggested for algebra. As a consequence, in the comments made both by

Kaput and in what follows, it is often difficult to distinguish between algebra in particular

and mathematics in general.

Teacher Preparation

A critical element in any agenda for algebra reform is the mathematical backgrounds

of teachers. According to a U.S. Department of Education Survey of Recent College

Graduates Transcript Data File, 56.3 percent of the full-time mathematics/science teachers

in 1988-89 who obtained bachelor degrees in 1985-86 took at least one calculus course.

If the data is representative of classes from other years, it seems to indicate that the
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mathematical background of 44 percent of mathematics and science teachers is very

deficient. Without a knowledge of mathematics, without an understanding of the major

themes in the branches of mathematics, most secondary teachers can only have rigid and

narrow views of the curriculum, with little understanding of what mathematics is really all

about; of how to make connections within mathematics and to other disciplines; of how to

apply mathematics to solve rich and meaningful problems. Their lack of kn ,wledge will

prohibit them from making choices that might provide their students with a rich and diverse

understanding of algebra. Their algebra lessons will be driven by their own remembrances

of the course and constrained by their limited knowledge to the pages of their texts.

Strong recommendations are being made that algebra should begin in early grades

and, thus, will be taught by the teachers in those grades. According to the survey, only 8

percent of the general education majors took at least one calculus course. This is not as

surprising as the data about secondary teachers but does imply that the amount of

mathematical preparation for 92 percent of the general education teachers is very limited.

Not that it is necessary for all teachers to take calculus, but most courses prior to calculus

at the university level are either remedial or duplicate high school courses. Preservice

teachers currently have few meaningful options. For most teachers, it is impossible to

teach well what you do not know. A seventh grade teacher who does not understand how

to write the equation of a line, given two given points, will not do justice to algebraic

concepts. A reform agenda must include some way to provide adequate mathematical

preparation for those who are to teach algebra.

Tradition

Tradition is part of the problem. Kaput ce.Ils for a new, more diverse curriculum that

has room to grow and change. Before the change, however, the agenda that is set must

pay attention to the current curriculum and pay attention in at least two ways: to the role

of algebra as a filter and to the understood content of algebra as perceived by those who

took and who teach it. Algebra has been reserved as the high school "entry" course for

mathematics, particularly for college-bound students. In many schools, only "good"

students are recognized as needing algebra, and schools make judgments on which

students are eligible for this gateway course. In addition, current trends in industry and

business indicate a demand for workers with an increased ability to handle algebraic

concepts in order to function efficiently in the workplace. As algebra reform is undertaken,
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it is essential that those algebraic concepts necessary for everyone are in a curriculum

accessible by all and that algebra as a barrier to college access be removed. Beginning

algebra in the early grades may alleviate the problem, but any potential solution must

carefully consider all possible implications.

Teachers perpetuate tradition in their classrooms. If teachers are to change what

they teach in algebra and how they teach it, they need to be convinced that what they

currently do is wrong, or at least not sufficient. Many of them are good at teaching

algebra. Their success is validated by students and parents. Students do master

procedures and learn to perform well on short-term goals. Most teachers do not have the

opportunity to teach those same students several years later to see the long-term, results of

their efforts, to see that second year algebra is a replay of the first year. With only

generalities such as "The role of algebra as a language" as a motivation, with no rationale

that makes sense to them, teachers will continue to do as they have done "successfully" in

the past. And those who are not successful will emulate those who are, because that is

how teaching algebra works and how they are judged. And thousands of students will

continue to miss the mathematics, become mystified by symbols and join the chorus of

adults who say "I never could do algebra," yet think "doing" algebra is important.

There is an institutional tradition about algebra. The school community and the

public have expectations about the content of algebra, and they do not lightly accept

changes that conflict with these expectations. What they learned or did not learn is what

should be. In addition, tradition has imposed a sequence on the subject that teachers find

hard to modify. In nearly every algebra course, the chapters are standard and the

exercises similar: graphing appears in the second semester of first year algebra; the

quadratic formula comes after factoring, systems of equations are studied separately from

equations (usually five chapters apart); functions do not appear until the end of first year

algebra and often not until the second year of the course. Further, the essence of algebraic

concepts has beep lost by dissecting each into minute parts: finding the solution to a

system is not the focus of instruction, but rather the use of the substitution method, the

addition method, Cramer's rule, the graphing methodto what purpose students are not

sure! Tradition and reliance on paper-and-pencil processes have decreed an order and

linearity in the approach to algebra that is very difficult to displace, yet as technology

makes new investigations possible and opens the doors to new ways of thinking, old
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questions now occur at very different times. For example, students thinking about linear

graphs and rate of change early in algebra often ask what happens when the change is not

constant. In rethinking algebra, these old questions and corresponding new ones must be

addressed.

Content

Before a solution to the problem of making algebra accessible to all students can be

implemented, before technology can be incorporated into algebra in significant ways, the

agenda has to contain some direction about content. Teachers need specifics. Why should

a topic be included in the mathematics curriculum? As an algebra teacher it is not

uncommon in today's classroom for me to stand in front of a class that is about to learn a

topic from the standard curriculum and ponder: "Why should I teach this? Of what use is it

to students? Is there a better way that will be more functional"? Mathematics should be

done for a profit. Unless students see some gain from using mathematics, most, in the

long run, merely go through the motions.

Mathematics is important if it

Makes something easier;

Generalizes a rule or process that is useful;

Provides a solution to a problem of interest;

Is fun;

Provides a link to understanding something else;

Is necessary to learn other mathematics.

A quick glance through an algebra text yields many topics that might fail to meet

any of the above criteria, particularly for the sequence and position within the mathematics

curriculum in which they are located. And even more significantly, the message about

importance can not be one that is apparent only to the curriculum designer. If students do

not perceive the gain from using algebra they will cheerfully (or not so cheerfully) continue

to do as they have in the past, avoid the subject, fail the subject, or tolerate the subject

mastering superficial knowledge in order to survive.

Furthermore, if calculus is not the capstone course, a reasonable option advanced

by Kaput, what is? What mathematics goals will drive the K-12 curriculum? What targets

should teachers aim for? Without clear mathematical outcomes and expectations, teachers

can not effectively design curriculum nor teach students. In today's classroom, it is easy:
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nearly every concept is driven by its anticipated use in calculus. The entire first year

algebra course sets the stage for calculus. Kaput suggests bringing new topics into the

core curriculum, topics such as matrices, statistics and uncertainty. To what end should

these be taught and will those at the university level who receive the product from such a

curriculum value students with new and different mathematical knowledge?

Assumptions

By far the most significant observation that can be made from my experience in the

classroom is that my perception of what students heard me say, of what they know and

how they approach a problem, is, at the very least, inadequate and usually dead wrong for

most students. They bring background knowledge of some kindwhich I often ignored in

the rush to tell them everything I want them to know. The ways in which students

construct their own understandings of algebra are not always obvious, particularly when

they have had access to graphing calculators for most of their work in mathematics. My

way of reasoning and approaching a problem is not theirs; and they are putting pieces

together in ways I cannot comprehend because I bring a traditional background to working

with technology and to solving problems. I have a solution and a technique for finding that

solution. It is difficult for me to reconstruct the thinking process I used before I had the

answers. It is even more difficult to try to reconstruct the process a student immersed in

technology might use. An agenda for algebra for the next decade must include helping

teachers learn to listen to students and to act on what they hear to promote the

development of mathematical knowledge.

Research and its contribution to increased understanding about how students learn

can play an important role in thinking about algebra. While there are many issues, such as

the relation between practice and context, that need to be addressed, there is a growing

body of knowledge that should help teachers understand how students learn algebra and

what they learn when they learn. A critical factor for a reform agenda is to provide

effective ways to disseminate the results of such research to teachers.

Symbol sense is a critical issue, but in new ways as well as old. Students need to

use symbols to communicate with technology. What is 7x on the calculator and how does

7x2 differ from (7)(12? Do students actually see the relation between tables, graphs and

symbols? What do they see when they look at a table? How do they move from a

discrete set of elements in which a pattern may or may not be obvious to a continuous
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graphical representation? What characteristics of an equation make sense when the

equation is used to describe a table of values or a graph? Are the points on a line only the

ones that you put there from the table? What do students think when they see a quadratic

expression, a quadratic equation, a quadratic function? Students do not recognize the

equivalency of $50 + 2x and 2x + $50, probably because they have entered the misty

land of symbols where what you see is not necessarily the same from place to place in the

course. What are the variables in y = mx+ b? Students make brilliant conclusions that

represent deep understandings yet often don't recognize them the next day written in

"official" alaebraic language.

Structure

Teachers must have a sense of the big picture of mathematics. Cross-cutting

concepts such as equivalence and its relation to re-expression, transformations and the

search for invariance, symmetry and its role in analysis need to be made explicit in the

organization of algebra. Kaput suggested central concepts in a very different way:

sensitivity, orbit, closeness, product and quotient structure, sameness. In rethinking what

is important in algebra, whatever organizational structure is used, that structure has to be

apparent or teachers have no goals on which to focus lessons. Algebra thought of as

representation as Kaput suggests might allow students to abstract from the process to the

concept. For example, in current algebra manipulations, the power of equivalent forms to

render "quantitative relationships more easily recognizable" (Kaput) is lost in the process of

creating the forms (whether this is done by technology or by paper and pencil; only a few

recognize what is actually taking place.) In addition, the tendency to redefine all of algebra

as "function," indeed as input-output, would seem to limit the usefulness and power of

,algebraic representations. Examples from physics such as F = Fl + F2, a net force

composed of two forces, or the use of algebraic representation for geometric objects seem

to reinforce the need for students to have access to different ways to think about

representations (and meet one of the criteria above for important mathematics).

Finally, as algebraic content and structure are examined, there seems to be a danger

that some will construct a "new" algebra using technology to do the same things

tomorrow that can be done by paper and pencil today. This may be one reason for the

current trend, which seems to emphasize function as the major focus of algebra, rather

than one of several very significant concepts. Technology will continue to evolve and, as
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Kaput's examples suggest, new visions of what can be done with technology will demand

even further modifications of the curriculum. The impact of this use of technology on

teaching and learning and its integration into the curriculum is not yet even conceived, but

surely must be accounted for in any reform.

The Big Picture

The overarching curricular goals, democratizing access to big ideas, and the

enabling goals Kaput laid out in his paper capture the essence of what the agenda for

reform must consider. Attention must be paid to diverse interests of students as they enter

the later years of secondary schools. And articulation must carry out the recommendations,

and unless teachers are partners in the change process, informed about the agenda,

knowledgeable about the direction of the mathematics and convinced that the reform will

benefit their students, algebra reform will be just another phase...management by

objective, outcome-based education, mastery learning...and teachers will close their doors

and do what they have always done for "this too will pass".
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What Is the Appropriate K-12 Algebra Experience
for Various Students?

James Fey
University of Maryland at College Park

A response to
Long-Term Algebra Reform: Democratizing Access to Big Ideas

While this question has been much debated forever, but especially over the past

10-15 years, my guess is that in one sense we really are in quite substantial agreement

about the answer. Modulo some disputes over fine points, I suspect that all of us want

students to acquire the ability to represent and reason about patterns relating quantitative

variables land quantitative relations that arise in numerical modeling of visual patterns) and

the ability to use symbolic expressions to describe and reason about patterns and

operations of more general sorts.

We probably also agree on many basic principles of how students can most

effectively acquire that understanding and skill and on instructional principles that follow

from them. We have already produced some very impressive demonstrations of how

technology can be used to enhance instruction and extend the problem solving power of

our students, and Jim Kaput's paper stretches the imagination even further. Quite a few

people have thought quite carefully about how the algebra strand of school mathematics

can be better formulated to prepare people for effective quantitative reasoning in technical

work and the judgments that face each of us who want to be involved in the social/political

decisions that shape our futures. Furthermore, the visions of algebraic knowledge that are

emerging from those considerations emphasize general mathematical understandings and

skills that, as best we can know now, should be adaptable for lifelong mathematical

growth.

The progressive choir in mathematics education sings nearly as one voice the lyrics

of variables, functions, relations, modeling, multiple representations, applications,

problemsolving, and so on. Unfortunately, the beauty and wisdom of our message very

often falls on unappreciative or skeptical ears. Why is this the case and what is to be done
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about it? In what ways has Jim Kaput's plenary analysis been insightful and what are the

issues that are not so satisfactorily dealt with?

It has always seemed to me that we have long had the right ultimate algebraic goals

for our students, but the path to those goals was so long and arduous that very few ever

acquired meaningful payoff from their labors. The truly miraculous impact of technology

was to open up our imaginations to entirely new and more efficient paths to algebraic

powerby increasing the potential effectiveness and pace of teaching and learning and by

making some legs of the traditional paths less critical than we had previously thought.

We've developed those dreams into curricular proposals and even produced a few fledgling

working school programs. But the world isn't beating a path to our doorways.

In some sense this failure of most schools and the concerned public to adopt our

ideas is a deep puzzle to me. In the face of overwhelming evidence that our current

curricula and teaching are not successful by any criteria, the public and many teachers

cling ever more tenaciously to traditional goals and practices. On the other hand, we have

to be candid and admit that we have precious little convincing evidence that our ideas can

be converted into working realities.

Has Jim Kaput set the right set of goals for our development and demonstration

efforts aimed at winning acceptance of new and powerful approaches to algebra in school?

I'm not sure. To pick on just a few of his many provocative proposals:

Replace the layer cake with interwoven strands. This is a very attractive

suggestion, based on the plausible premise that a curriculum of interwoven strands

will help students develop the kind of connected knowledge that is easier to retain

and to deploy in realistic problem contexts outside the formal mathematics

classroom. But, as desirable as this proposal seems, it doesn't seem critical to the

improvement of algebra. As with so many other reform ideas in the air, the efficacy

of integrated curricula has not yet been demonstrated.

Integrate the basic ideas of algebra into K-8 mathematics. Again, this suggestion

has real promise. There are other countries in the world where algebraic ideas are

standard parts of elementary school curricula. However, there is a big difference

between introducing some ideas of algebra and accomplishing a substantial

treatment of the major concepts and skills of that core subject. While I'd be the last

one wanting to be quoted as saying "kids can't," there seem some genuine
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cognitive obstacles to acquiring a useful understanding of algebraic methods. We

need to know a lot more about the potential for accelerating the algebra agenda in

curricula (demonstrations in realistic classes with typical teachers and students)

before we get very excited about this notion.

In many of the newer proposals to exploit technology in revision of algebra,

we are actually calling for students to demonstrate more sophisticated conceptual

and macro-level thinking than the absorption of rote symbol manipulation routines

require. For this reason, and the practical consideration of teacher capability to

deliver thoughtful high-level conceptual mathematics instruction in the early grades,

prospects of moving algebra down to the grades seem problematic.

Enrich the core 9-10 curriculum. It goes without saying that most current school

curricula, especially in algebra, leave students with an impoverished and limited

vision and understanding of the subject, However, proposals to enrich current

curricula don't really promise help with development of basic ideas of algebra. If

anything, it seems that the more plausible proposal for American mathematics

education is to focus attention on a smaller number of major, powerful ideas and to

develop student ability to deploy those ideas with flexibility and imaginationnot to

load more topics into an already busy, but often trivialized, curriculum.

Whether you agree or disagree with any or all of Jim's suggestions, it seems to me

that there is one glaring omission in his remarks. All of us who want to change the

worldto win friends and influence people to a new way of thinking about algebra and its

teaching in school mathematicshave a first challenge to construct existence proofs of our

ideas. As plausible as any of the current proposals for algebra might be, we are obliged to

demonstrate that teachers can be prepared to use the new curricula effectively in schools.

The history of mathematics education is littered with proposals that had compelling

theoretical rationales but could not be effectively implemented, and many of the current

reform proposals have far too little supporting evidence to justify broad implementation.

Some of the required demonstration work is under way, and we should be trying to

get our best new ideas woven into the experimental curricula being developed and tested.

We should also be testing radical ideas on the fringe of what is feasible, without putting

kids at too great a risk. Its certainly true that it often seems as if things couldn't get a

`Whole lot worse than they are right now. However, a responsible scientific attitude

63

C'5



compels us to accumulate solid research and development evidence before we expect

schools and the public they serve to adopt our proposals. Until we have that evidence, we

won't really know what the appropriate algebra experience is for various students.
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Algebra at the College Level

Michael Artin
Massachusetts Institute of Technology

NOTE: This is an edited transcript cf my informal talk at the Algebra Initiative Colloquium.

It has three parts:

What is algebra, and why is it important?

A schematic description of an algebra course.

Some thoughts on the algebra curriculum.

What Is Algebra, And Why Is It Important?
It seems reasonable to examine these questions before discussing curriculum.

Though there are fairly satisfactory answers to the first question, the second one remains a

mystery to me.

Here are three attempts at a description of algebra: Algebra is

The language of mathematics;

Working with x; and

The study of the algebraic operations +, x and their analogues.

I like the first description, the one Carole Lacampagne used in her announcement for

this workshop: Algebra is the language of mathematics. Algebra is one of the most

abstract parts of mathematics, and I've always felt that language and abstraction

are closely linked. In mathematics, when the right definition is made, an understanding of

the abstract concept evolves out of it. But when I mentioned this feeling to a neurologist a

number of years ago, he said:

No, that's wrong. The power of abstraction is much more shallowly rooted

in the brain than language. People with a brain injury often lose the ability to

think abstractly, though the language capability remains.

This was interesting, and so I asked him: "How do you test abstract thinking?" He replied,

"Oh, we have standard tests. For instance, why is an apple like an orange?" The thing is,

I flunked the test. I thought: "Well, they're both sort of round." But the apple has those

dents, so I rejected that answer. Then an orange is orange and an apple might be red. It
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became painfully clear that one of us was in the wrong field. After a while, he put me out

of my misery. He told me that the right answer is "fruit," and we changed the subject.

During my college days I had some summer jobs doing manual labor, and I have a

sad recollection from that time which also makes me wonder in what sense abstract

thinking is fragile. It is about a mentally handicapped man on one work crew who followed

the Brooklyn Dodgers. Though it was near the limit of his ability, this man always learned

the result of the game before coming to work. He would start the morning by announcing

the scure several times in a loud voice. "Dodgers 5, Giants 3 yesterday." The rest of the

crew usually responded gently. Then as the day went on, he would ruminate on his one

piece of information, working out its implications and reporting his conclusions to us from

time to time: "Dodgers beat the Giants",...,"Giants lost," and so en. Each reformulation

gave him the pleasure of a new insight, and I found this so remarkable that I remember it

clearly today. Had it not been for his birth injury, he might have become a mathematician.

So, though there is clinical evidence to support the neurologists' view, I'm not completely

convinced.

"Working with x" is roughly the definition that Victor Katz gave in his talk:

The science which employs letters in reasoning about numbers, either to

discover their general properties or to find the values of an unknown number

from its relationship to known numbers.

This description is still applicable to most of high school algebra, but for algebra at the

college level, often called abstract algebra, it isn't completely sufficient. Hence our third

definition. It is very close to the second description, but its allusion to analogues allows us

to fill in something new.

The seed of the third description is already in the opening line of Euler's 18th

century algebra book. Here is a rough translation, but the original is nicer:

Everything which can be multiplied or divided, to which something can be

added or from which something can be taken away, will be called a quantity.

But up to 1900, texts such as Weber (university texts) used the "working with x"

definition, and since then, people haven't really tried to define the term "algebra" at all.

Finding a satisfactory answer to the second question: "Why is algebra important?"

is much harder. From some points of view, the importance is clear. One may mention the

historical importance of the Greek "quadrivium":

66

08



arithmetic

astronomy

geometry

music,

and the modern trinity of core mathematics:

geometry

algebra analysis.

Though algebra is an Arabic word which dates from the middle ages, the subject has been

a large branch of mathematics since the time of the Greeks.

Now I have two puzzles to which I want to draw to your attention. I think that a

satisfying explanation of why algebra is important ought to lead to an understanding of

these observations:

In concrete examples, the algebraic laws seem to be superimposed

artificially on structures which occur naturally.

Algebraists study, almost exclusively, binary laws of composition.

Here is what I mean by artificiality of the algebraic laws. Let's take three

fundamental examples of algebraic structurethe integers, the group of symmetries of a

figure, and the state spaceand ask: What are the algebraic laws?

The integers are for counting: 1, 2, 3 That's the integers. What are plus and

times? These laws are superimposed on the counting structure. Now it is quite hard to

think back to the integers, but I tried, and I came to the conclusion that the algebraic laws

are artificial. Certainly addition and multiplication are useful because they help you to

count. You learn to manipulate them and they are useful tools.

characterized axiomatically. I'm not satisfied.

Take symmetry. Say you have a regular polygon. You can rotate through some

angle, or you can flip it around an axis of symmetry. What do mathematicians study?

They study what happens if you first rotate and then flipthe composition of those

symmetries. Why is that important? This is really unclear to me.

Finally, take the state space. In physics, you make some measurements on a

particle and you assemble them into a "state" vector. What does it mean to add two

states? A Volkswagen Beetle is traveling down the turnpike with a lady bug crawling

across the back seat. An observer at rest computes the state of the Volkswagen, and

And of course they can be

a

passenger computes the state of the lady bug. When you add the two you get the state of
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the lady bug, viewed from the position at rest. That's superposition of states, and it is

quite forced. So the algebraic laws are artificial here too.

Also, the second point: Why do we always study binary operations? You know us

algebraists, we've been at it for a long time. We've written thousands of pages. And of

course there are laws that aren't binary, but nobody studies those. That is another puzzle.

There is a striking contrast here between algebra and geometry. The utility of

geometry is quite a bit less clear than that of algebra, because you can't use geometry to

compute. Nevertheless, its place in He trinity seems secure. I think the reason is that

geometry is explained cognitively: It is the way our visual cortex expresses mathematics.

I'd like a similar expianation for algebra, one which clarifies its relations to other cognitive

functions such as language. Unfortunately, such an explanation hasn't yet been found.

"God made the integers; all the rest is Man's work." This is a famous quotation of

Kronecker, but I don't believe it. In spite of what seems to be artifice, there has to be a

natural explanation of "the rest," because if Kronecker were right, then "the rest" wouldn't

be very important. But algebra is important. It is one of the holy trinity of mathematics.

So algebra must have a cognitive explanation too.

Schematic Description of an Algebra Course

How do you discuss curriculum? The only really sensible way is in the context of a

particular course. So I'm a bit hesitant to show this. My description is a three-

dimensional array: objectives, content, and structure. Ideally, I'd like it to be completely

tautological. I made it up in consultation with several colleagues because I thought it

might be useful at this workshop, but I'm sure you will want to amend it. If you wonder

about the order, it is alphabetical in each column.

Objectives Content Structure

Applic lion Context Class

Engagement Examples Exercises

Logical Reasoning Theory Tests

Technique Window Dressing Text

Understanding

Let me say something about what I mean by the words:

By application I mean the ability to take the material learned and to apply it to a

new situation. That is certainly an objective.
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Engagement means engagement of the students. I mean arousing their interest:

motivating them for the course, and beyond. Of course, there is another

engagement that is very important: that of the teacher. But that is not an

objective. (Our transit system seems to have two objectives: the convenience of

the commuters and the convenience of the employees.)

Logical reasoning is supposed to be a catch-all phrase: the ability to abstract and

conceptualize as well as to make logical arguments which require several steps.

Things like that. If you ask people who have taken mathematics courses in

college and have gone on to something else in life what they got out of studying

math, that will be what they say: The ability to do such things.

Technique means facility in making the computations that are required for the

particular subject.

Understanding refers to the content of the course.

Context places the material of the course in a broader framework. It might be

applications, or history.

By examples I mean conceptual examples. I don't mean to solve x + 3 = 5, but

addition of integers, or the group of symmetries of a figure. What are the basic

structures that one is talking about? That is what one should think of when

talking about examples in an algebra course at the college level.

Theory is the synthesis of the examples.

Window dressing is extraneous material that is not properly attributable to

context. It sounds like a pejorative term. Actually, window dressing is quite

important.

Some Thoughts on the Algebra Curriculum

Should we revise the curriculum? I ask this as a rhetorical question. I think that we

should, and I see two reasons why it it is important to do so.

One reason is that the students coming in are changing in many ways:

demographics, TV, computers, and so on. Since these changes have been discussed

frequently, it seems unnecessary to talk about them here. And as the school curriculum is

revised, that will have an influence that we will need to take into account at the college

level.
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Another reason is that people at major universities around the country often tell me

they hate to teach the algebra course. They say, "It is a bunch of definitions and some

abstract lemmas; nothing serious gets done," or else "The students are so lousy, we can't

teach them anything." I have a hard time understanding these depressing remarks because

I've taught algebra for many years and, if anything, I enjoy it more every year.

Here is a caricature of the life cycle of a curriculum. I've made it on the basis of a

book because, traditionally, the text has played a major role in defining curriculum.

Phase 1: Influential book appears Ind is adopted.

Phase 2: Books pare down in order to cover more.

Phase 3: Books pare down in order to become accessible.

Phase 4: Course is reduced to a skeleton.

In an algebra course, the influential book might be Birkhoff & Mac Lane, a great book

which appeared 50 years ago. That's Phase 1. People adopt it, and curriculum is

established.

Then comes Phase 2: Books pare down in order to cover more. Why? Because,

the influential book defines the syllabus. This means that changes are treated as additions.

The author of the next text may want to get to certain interesting points: to cover another

topic, or to treat something in more depth. It might be the Sy low Theorems; they aren't in

Birkhoff & Mac Lane. The existing text has to be compacted to make room. for the new

material. So there are natural forces that result in paring down of the books.

Phase 3: Books pare down in order to become accessible. Phase 2 books are too

hard because they are pared down and include more. Other forces are also at work. in the

beginning, Birkhoff & Mac Lane would be taught primarily to senior math majors. Then it

became junior majors, and then some sophomores and nonmajors. You teach a wider

group of students at earlier stages in their education.

Finally, in Phase 4, the course has degenerated. This is the current status of some

algebra courses.

I don't really believe this caricature. It is Shiva worship. Many books have been

written since Birkhoff & Mac Lane, and they have made positive contributions. Brahma and

Vishnu are also at work. But the faculty views that I quoted above lead me to think that

this has taken place to some extent.
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Since books set the curriculum, we should pay more attention to textbook writing.

Look at the following table from the 1990 NRC report "A Challenge of Numbers."

TABLE 53 Professional activities of four-year college and university mathematical sciences faculty

Universities

Mathematics

Public four-year
colleges

Private four-year
colleges

Statistics

Universities

Classroom tcaching performance 70 (3) 81 (2) 96 (4) 71 (6)
Published research 96 (0) 70 (10) 26 (39) 100 (0)

Service to department, college.
or university 31(5) 63(5) 66(0) 31(11)

Talks at professional meetings 42(5) 49(11) 13(28) 25(11)
Activities in professional societies

or public service 22 (8) 45 (4) 33 (9) 31 (6)
Supervision of graduate students 34 (7) 21 (32) - 81 (0)
Undergraduate/graduate advising 9(22) 24(20) 3902) 21(21)
Expository and/or popular articles 22 (13) 37 (14) 14 (40) 1409)
Textbook writing 9 (35) 17 (35) 11 (58) 12 (50)

This chart reports on a survey of department heads, who were asked what is important

and what is unimportant for promotion and tenure of their faculty. There are several

interesting things in the table, but I want to draw your attention to one in particular. Only

10 percent of the chairs think that it is important for their faculty to be engaged in writing

texts. I've been trying to understand this remarkable statistic, and I hope it will change.

Let me show you my schematic description again, listed this time in what seems to

me is the order of importance:

Objectives Content Structure

Engagement Examples Exercises

Application Context Class

Logical Reasoning Theory Text

Understanding Window Dressing Tests

Technique
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You will probably agree that engagement is the most important objective of a course.

Though all of the objectives are important, technique comes in a weak last.

Examples and context are more important than theory. Window dressing is important,

but it is not as important as the other parts of the content.

Exercises form the most important part of the structure of the course. Class and text

are perhaps equally important.

Notice that, though we're thinking of this as an algebra course, our description has

nothing to do with mathematics, with the possible exception of logical reasoning.

General Principles About Curriculum at the Undergraduate Level

All Topics Should Be important. This sounds tautological but it is not always

followed. We should be ruthless in asking: "Is it important for the average student in the

class to learn this material?" If not, throw it out. There's plenty that is important.

I see three criteria to apply in assessing the importance of a particular topic: beauty,

historical significance, and utility. For example, the impossibility of trisecting the angle

with ruler and compass is a topic which ranks high in beauty. It deserves a reasonable

mark for historical significance, but it fails the utility criterion completely. One might well

ask: Is it worth doing in a college algebra course? Well, I often discuss it. Should it be

locked into the curriculum? I don't think so.

An admonition for this workshop: Don't lock the syllabus in place. Let's not tell

people exactly what belongs in the course. For an undergraduate course, the most

important thing the students should come out with is a familiarity with some examples

some basic structures on which they can build their understanding. That is more important

than theory. In a graduate course one is training professional mathematicians, and one

needs to develop the theory systematically.

Appropriate examples should precede the introduction of new concepts, and in

general, special cases should come before the general. (I'm breaking this rule today.)

Minimize Direct Attention To Service. By this I mean covering a topic in your course

only because another course needs itteaching exterior algebra because it is useful in

differential geometry, for instance. Of course service is important, but I'm not in favor of

such direct attention.

Minimize Problems Which Are Pure Drill. This is justified because technique is at the

bottom of the list of objectives.
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Now I'm going to talk a bit about window dressing. It came last on the list, but I still

want to encourage people to pay attention to it. Please excuse me for trotting out two

examples from my own algebra course.
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SO2

Diagonal
matrices

Trace-zero
matrices

This is a picture of the special unitary group SU2, which is a three-dimensional sphere. For

years, my students complained when I tried to get them to think about this important

example. Then one day I had a brainstorm: longitudes and latitudes. It turns out that the

longitudinal great circles have algebraic significance. They are subgroups. And if you take

a horizontal slice, then, because the group is three-dimensional, you get an ordinary

two-dimensional sphere. These latitude spheres are the conjugacy classes. My students'

attitude changed remarkably once I organized the material along these lines. They began

asking for more reading. But of course, calling them longitudes and latitudes is window

dressing.

Following current fashion, I'm encouraging the students tc work in groups on their

assignments. This has required a major change in my attitude. I think it is good for social

reasons, but also because it allows me to assign more extensive problems. Here is the

latest version of a problem which I've assigned regularly for perhaps twenty years. I'm still

working on it.
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1. Find a way to compute the area of one of the hippos which make up the pattern

above. Do the same for one of the fleurs-de-lys.

2. Find two different fundamental domains for each of the patterns.

3. Prove that if D and D' are fundamental domains for the same pattern, then D can be

cut into finitely many pieces and reassembled to form D'.

4. Find a formula relating the area of a fundament& domain and the order of the point

group of the pattern.

The first problem is the hook, and of course calling them hippos is window dressing. (The

students claim these are not hippopotamuses. I say that they are hippo heads, and the

students accept that.) As it turns out, you can cut up one hippo and reassemble the

pieces to form the parallelogram which joins the tips of four ears. So the area of the

parallelogram is the answer. That is what I hope students will discover. You can do a

similar thing with the fleurs-de-lys.

If you move the hippo around the plane by all of the symmetries that the pattern has,

you will cover the plane without overlaps. This means that one hippo makes a

fundamental domain. The parallelogram is also a fundamental domain for the hippo

pattern, and half a fleur-de-lys is a fundamental domain for the second pattern.

The last problem is quite challenging. The order of the point group counts the angles

of rotational symmetry and the directions of the axes of reflection. Since the order is

dimensionless, there is a missing term.

I think this is a good format for an extensive problem. It has an attractive hook and

suitable window dressing, it is in increasing order of difficulty, and It doesn't give all of the

answers away. My experience is that though the problem is challenging, the students can

get quite far on it, especially working in a group. It would embarrass me to show you the

condition the problem was in when I handed it out just 5 years ago.
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Creating exercises is hard work, and good ones should enter the public domain,

because they're so difficult to make. That is why the same problem from China from 200

B.C. is still in the curriculum (see Katz, this volume). We need to find ways to encourage

people to develop thoughtful exercises and to facilitate their dissemination. These days,

exercises for a course are most often taken from the text. So, the exercises form the most

important part of the book. But assembling them is usually the last thing an author does.

A question for the workshop: What mechanisms can the community introduce to

stimulate an improvement in teaching and in solving the pedagogical problems? The

pedagogical problems don't really change much. We have been teaching modern algebra

to undergraduates in this country for 50 yearssince Birkhoff and Mac Lane appearedbut

the difficulties one encounters when teaching bilinear forms, for instance, have not been

solved.

Let me return for a moment to logical reasoning and abstraction. I want to make the

point that these skills are useful everywhere, not only in mathematics, and also that they

are largely learned. My college roommate, an archeologist, came to visit last spring, and

while we were talking about mathematics he said: "We have no abstraction in

archaeology." Actually, archaeology is about as abstract a subject as I can imagine. If

anyone is building castles in the air, literally, it is the archeologist. It happened that earlier

in the day he had told me that he was teaching about the "Hunter/Gatherer" in his course.

But he was f:ompletely unconscious of the fact that this is an abstract concept.

In the early thirties, the cognitive psychologist Alexander Luria interviewed people in

the Kazakh region of the Soviet Union who had no formal education whatsoever. He

discovered some very interesting things about their treatment of abstraction. One

experiment consisted in giving people several pieces of yarn and asking them to sort the

yarn into groups. People who had even one year of, school education would sort by color:

blues together, and so on. But those with no formal education tried to sort according to

the uses that a particular yarn might have. Luria also played a syllogism game:

Question: "In the North, where there is always snow, the bears are white. Novaya

Zemlya is in the far North and there is always snow there. What color are the bears?"
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Answer: "I've never been to Novaya Zemlya," or "The only bears I've seen are black."

Luria's report contains many such experiments. It makes good reading, but it went

unpublished for 40 years because the Soviet authorities thought that it denigrated the

peasant.

So you see, logical reasoning and abstraction are learned skills. Given enough

motivation, anyone can make progress in learning them. For example, they aren't going to

catch me with that fruit question again! And if we expect our students to learn these

things, then we have to teach them.
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Algebra Initiative

Vera Pless
University of Illinois at Chicago

I think Mike Artin has made some very good points, outlined the areas that we

should be concerned about and given us many thought-provoking ideas about our

undergraduate curriculum. Here are some reactions.

I appreciated the discussion of what algebra is, its historic origin and central place

in mathematics. There is much food for thought here. I am uneasy about tracing its origin

in cognitive processes since I think that would imply a certain universality and, as I

understand it, our mathematics is the result of philosophical attitudes in Western

Civilization (from ancient Greece). What type of algebra developed in Africa or Asia? I do

not regard this as a criticism as we do have difficulty teaching algebra, and these cognitive

concepts might help. I think most mathematicians regard certain topics as belonging to

algebra (i.e., linear algebra, group theory, ring theory, fields, number theory). There are

new areas whose relation to algebra is not so clear to me, combinatorics, for example.

Some parts of combinatorics seem to fit these definitions of algebra, however, other areas

of combinatorics are not so clearly algebraic.

With its central place in mathematics, to me algebra needs no justification; although

its great usefulness has been mentioned several times, in physics for example and more

recently in cryptography and coding (as mentioned by Susan Montgomery).

I liked Artin's division of a course into objective, structure, and content. I agreed

with everything he said here, but I have a few comments. I particularly liked the goal of

getting the students engaged or involved. I think this is very important and is something

we should concentrate on. I would like to add to this list, motivation. It is one way to get

students engaged. It is a challenge to determine what motivates students. Sometimes

applications do, sometimes not. Certainly, there are other motivations.

I agree that part of our job is to teach abstractions and logical reasoning. I think we

should go into this in more detail. I assume logical reasoning is the same as the proofs

which so many members of our panel have raised as the area where students have the

most difficulty. In addition to finite induction, we can teach other proof methods as
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mentioned in Professor Artin's fine algebra book. These others are proof by contradiction

and proof by divide and conquer (dichotomy). I would add to these proof by construction.

These proof techniques can be mentioned explicitly and also pointed out in the course of

explaining the material. Related to this, I think we should teach students how to

communicate about the mathematics which they are learning both orally and in writing.

This is not easy. None of this is easy. We also have to consider how to teach abstractions.

It seems to me this can only be accomplished by many concrete examples and then

pointing out their common features.

It is certainly better that examples precede any theory. I agree that exercises are

important, and I would add that computations should have an important place here.

However, exercises should be graded or looked at in some way. There is a problem here.

We do not get graders for most of our courses and grading can take a lot of time.

Clearly, we should eliminate pure drill and emphasize important topics, but there are

bound to be disagreements about what these are. I like window dressing. Anything that

humanizes our mathematics should be addedpersonal stories, anecdotes, history. I would

like to briefly describe our department and our algebra courses in order to describe more

fully what Professor Artin has called the demoralization of the faculty and to demonstrate

that there is a need for reform.

We have a faculty of approximately 70 people in diverse areas, pure and applied

mathematics, computer science, statistics, and mathematics education. Our undergraduate

algebra consists of linear algebra in two flavors, two semesters of pure linear algebra and

one semester of applied linear algebra. There is also a semester of abstract algebra. These

algebra courses are usually begun in either the junior or senior year. The mathematics

education majors take the pure courses. The applied students, computer science majors

and engineering students take the applied course. As far as I can see, the difference

between the courses is not a matter of applications. The pure course stresses vector

spaces and linear transformations. There are more proofs in the pure course and more

techniques and examples in the applied course. There are five sections of the applied

course running this semester and one section of the pure course. I interviewed 12 faculty

members who taught these courses at sometime (including myself). The estimates (of the

instructors) of the percent of students in the pure class who understood the course ranged

from about 20 percent to 50 percent. The same question for the applied course elicited the
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numbers 30 percent to 75 percent. This response is not just due to the fact that the

students cannot do proofs although that was certainly mentioned, but to the fact that they

did not know what math was all about; in fact, do not understand why a proof is needed.

Some instructors mentioned that the students did not have a background in finite

induction, set theory, and quantifiers. However, these students were considered intelligent

and hard working.

The results from the abstract algebra class were even more depressing. The

students were just turned off. This course has 11 students this semester who are working

hard and not comprehending. I do not consider this situation acceptable. In general, the

instructors liked their texts, however, there is disagreement as to whether the texts are

suitable for the students with the backgrounds our students have. These students are not

engaged. I think we should consider how to engage them andif algebra is to be part of

their education, I think it should begin at a lower lever, probably with more concrete

courses.

There is also a number theory course taught and two semesters of undergraduate

combinatorics. The feeling of malaise is missing in the combinatorics class. The students

enjoy it, find the many applications as adequate motivation and appear to understand.

There are some proofs here, but mainly the course involves techniques. There are many,

many concrete examples.

There is also a coding theory for upper level undergraduates and graduate students.

It runs every year because of demand. The only prerequisite is linear algebra. Many of the

topics in the abstract algebra course are needed but they are taught in the coding class.

These include a bit on groups, mainly as symmetry groups, rings, and much of the finite

fields. Examples and context come before theory. Furthermore, all of the algebraic areas

are motivated by their importance to the coding theory. The approach is algorithmic and

constructive. There are many, many concrete examples and much computation.

I do not think the experience of our department in undergraduate algebra is unique.

Our students are not engaged. They are not getting the enjoymit out of algebra that they

should. Many of our algebra teachers are demoralized. I think there is a need for reform.
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I agree that in addition to the problems of student engagement, methods of

instruction, and course content; there are the questions of teacher engagement, good

textbook writing and propagation of appropriate and challenging exercises. In this context,

I think it should be noted that excellent teachers have their own, different teaching styles,

and that we should not be locked into either a particular teaching style or a particular

syllabus. These are many topics for future discussions.
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Algebra and the Technical Workforce

Henry Pollak
Teachers College, Columbia University

I should like to begin this discussion, in a rather broad setting, with the following

question: Why do s society give us so much time to teach mathematics? We are one of a

very small number of subjects which typically get time every year of schooling. Why?

What are the purposes of teaching mathematics to all students? There are answers which

do not get at the question"to prepare for the exams," or "to fulfil the prerequisites for

the next mathematics course," things like that. I think that we have four basic needs in

mind: The mathematics for practical everyday life, the mathematics for intelligent

citizenship, the mathematics for future employment, and mathematics as a part of overall

human culture. I don't for a moment wish to pretend that these are disjointed. Many areas

of mathematics are highly visible in most, if not all, of these areas. This is an important

point, because it means you really don't have to create special sections, or even courses,

for the needs of employers. We will see that what employers need most from school

mathematics is, to a large extent, what future citizens need for everyday life and to be

intelligent members of their communities, era what they should receive as a part of their

cultural heritage.

These aims of mathematics education have always been there. True, the relative

emphases keep changing: Thirty years ago, we had more emphasis on the ciliture of

mathematics; 10 years ago, we began to see more of the richness of the use of

mathematics in citizenship; 5 years ago, we started to highlight employers. But what has

driven the need to rethink mathematics education in a fundamental way have been the

changes all around mathematics education: technology, applications, and mathematics

itself are all very different; and they all change what we teach and how we teach it.

What do employers need from their employees' mathematical education?

The ability and the instinct to set up a problem.

The ability to tell whether an exact or an approximate answer is needed, how

much accuracy might be wanted, and about how big the answer should be.
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Once these decisions are made, the ability to get an answer by any

convenient means.

The ability to work with other people.

The knowledge that lots of different kinds of mathematics exist and have

their uses. The mathematical formulation of a real-world situation may turn

out to be probabilistic, or it may turn out to be data driven. (The data driven

often involves statistical process control.) The problem may be one of

optimization and planning. It may turn out to require a systems approach. It

may best be thought of as discrete, or algorithmic. A good summary of the

employers' point of view may be found in Mathematics Education: Wellspring

of U.S. Industrial Strength, published by MSEB in 1989.

Now what does all this imply about mathematics education? What follows from

such employer needs? Here are some important aspects of mathematics education from

the point of view of future employment.

Problem finding as well as problem solving. This realization is a key

difference between the agenda for action and the standards.

Emphases on estimation and on the meaning of accuracy.

The ability to solve a problem mentally, or by paper and pencil, or on the

calculator, or on the computer, and.some experience in making a good

choice among these alternatives. Corresponding to the number sense implied

by the need to make these choices in an arithmetic context is symbol sense

in algebra and beyond.

Knowing that a large variety of mathematics exists, arid the kinds of things it

can do;

Understanding when, how, and why mathematics works.

Experience with cooperative and group learning of mathematics.

Above all, experience with modeling real-world situations mathematically,

and being comfortable with the open-endedness of such modeling.

In recent years, I have taught several courses in mathematical modeling to mostly

in-service teachers at Teachers College. We take situations from human activities, or

engineering, or physical science, model them, and study the models and their

consequences. What the students have pointed out to me is that modeling, as we practice
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it, assumes command of the fundamentals of all of high school mathematicsand in some

cases, calculus. In a course on modeling, you want to concentrate on the process of

modeling, and on the interplay between the simplifications and the results. You use

whatever you need in the way of algebraic technique, graphing calculators, computer

programs, and simulations. This reminds us of the fact that the organization of high school

mathematics into a year of algebra followed by a year of geometry followed by another

year of algebra followed by ? is not likely to be the outcome of zero-based optimizing. I

think we do it this way in year N because it was done this way in year N-1. This statement

holds for all N. The "New Math" of 35 years ago wanted to interrupt this induction, but we

were told that the mobility of the American school population precluded such a radical

change. One of the most helpful signs from the point of view of employment is that this is

no longer an unalterable hypothesis of school mathematics rethinking. A notable leader like

Zal Usiskin, for example, is willing greatly to enrich his "algebra" course, as long as he can

still call it algebra.

Back to the subject of modeling. Modeling as a central theme for a school

mathematics program is a new idea, about which I will shortly say more. It represents a

major employer need, as well as an essential aspect of mathematics itself. But the

influence of employer needs on mathematics curriculum and pedagogy is not so new. A

historical vignette of employer influence on mathematics education: One of my prized

mathematical possessions is a report of the American Mathematical Society's Committee

on the Teaching of Mathematics to Engineers, which report was based on a conference in

December 1907, finished by the Committee's Chairman, Harvard Professor Edward V.

Huntington (of apportionment fame) in 1911, and then published by the Society for the

Promotion of Engineering Education in 1912. In it, the two most important topics of

algebra are the transformation of algebraic expressions, and the solution of equations.

Ratio and proportion, variation, inequalities, and progressions are also mentioned briefly.

Many other topics which are part of traditional high school mathematics are summarized,

and calculus is the culminating experience. My reason for bringing this up is that one of the

members of this AMS committee (remember that this work preceded the founding of the

MAA) was Charles P. Steinmetz, consulting engineer for the General Electric Company. It

becomes clear in this report that Steinmetz was telling the rest of the committee that the

study of complex functions was essential to electrical engineers. This caused a furor. I
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quote Professor J.B. Webb: "After Dr. Steinmetz, a layman, produced his book on the

treatment of alternating currents, using complex variables, there was less objection made

to them. Now I say it is a disgrace that it should be necessary for a layman to show

professional teachers that a certain part of mathematics is needed." Professor G. H. Morse

from the University of Nebraska states that he used complex quantities in teaching

alternating currents, and that the same was happening at Illinois and at Purdue. One

implication of looking at algebra from the point of view of the technical workforce is that

we will need to exchange ideas with, and listen to, their employers.

That was about complex numbers in the university. What about complex numbers in

high school? The current discussion of this issue illustrates how the point of view on the

relation between mathematics education and applications of mathematics is evolving. The

traditional difficulty with complex numbers is that between their introduction in

second-year algebra for the solution of quadratic equations, and the proof by power series

in second-year calculus that explix) = cos U + i sin x, almost no use is made of complex

numbers. Traditional applications are numerous, but depend on the notion of frequency and

on the formula I just mentioned. De Moivre's Theorem is often taught in trigonometry, but

doesn't get used for applications at this point. The possible introduction into the curriculum

of difference equations, or if you prefer, dynamical systems, can provide for the first time

some possible applications for complex numbers. If the characteristic equation for a

second-order linear system with constant coefficients has complex roots, then the

solutions will exhibit oscillations, and their study depends only on De Moivre's Theorem,

not on the notion of frequency! If we now wish to decide whether or not the study of

complex numbers in high school should compete successfully for some of the limited

available time, we might want to see some possible applications of such systems. Two

come to mind, both mentioned in Jim Sandefur's late,t book (1993): Paul Samuelson's

model of investment in the economy, and a difference equation model for the oscillation of

a spring. Should a decision on the teaching of complex numbers in high school depend on

the appeal of these models? Who knows of others?

Modeling as a central and even organizing theme for high school mathematics has

appeal from the point of view of the large number of students who prefer their

mathematics to be useful. It has even greater appeal as a philosophical vehicle for keeping

students together than might otherwise be possible. All the destinations of high school
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mathematics students, whether it be the work force directly after graduation, or 2-year

college, or various 4-year college majors, have in common the need to use mathematics.

The need and desire to learn how mathematics is used can unite students over all the

destinations we have just mentioned. This, in my opinion, is part of the philosophy of the

Pacesetter program of the College Board, which is now in its first year of experimental

teaching. It is intended as a capstone high-school mathematics course.

Much more comprehensive is the 3-year high school curriculum called ARISE, which

is being developed by COMAP under a grant from the National Science Foundation. Here all

the mathematics for grades 9 through 11 will be derived from, and connected with, real

situations the students examine and model. Four units which were first developed last

summer and are now in the first throes of gentle field testing are on Codes; on Motion

such as exemplified by a movie marquee, a hot-air balloon or, eventually, morphing; on the

Landsat satellite and its usefulness; and on the Moose population in Adirondack Park. The

mathematics studied includes, for example, linear functions, parametric representation of

motion, similarity, and the distinctions between linear and exponential models. Graphing

calculators for each student and computers for each classroom are assumed. Opportunities

arise for lots of other goodies, such as some new feeling for the significance of

"one-to-one onto" through codes, or'the multiplication of signed numbers through

parametric linear equations and their representation on the graphing calculator. I shall leave

it to my friend Sol Garfunkel to correct these hasty opinions.

It is too early to tell how such a dynamic relationship of algebra and modeling will

thrive, but it is certainly exciting to be a part of the experimental process. Here are some

other key features of a curriculum in which the needs of employers are considered

important:

Data analysis will play a critical role. Its inclusion in school mathematics was

pioneered by USMES 25 years ago, and received big boosts from the Quantitative Literacy

Project of NCTM and ASA, and from the Conference Board report on what is and is not still

fundamental in school mathematics. More recently, the Contemporary Pre-Calculus book

written at the North Carolina School for Science and Mathematics (1991) and published by

Janson shows what a powerful motivation data analysis can be for all kinds of algebra

developments.
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The use of spreadsheets on the computer, and other forms of simulation, will also

play a great role in making algebra more useful, more timely, and more exciting.

Some other aspects of algebra whose importance is greatly enhanced by the

prospects of its usefulness on the job are symbol sense, stability, and

"back-of-the-envelope" approximation. Symbol sense as an algebra analog of number

sense in arithmetic was, as far as I am aware, first discussed by Jim Fey in his chapter of

MSEB's "On the Shoulders of Giants." For example, the need to extract different

information from an algebraic expression leads to alternate but equivalent forms being

preferredmuch as different modes of arriving at a numerical answer compete in

arithmetic. A sense of the possible effect of a particular coefficient on the behavior of a

function is in some cases much like computational estimation. A feeling, developed by

experience, that expression B could not have been derived from expression A, and that

therefore I must have made a mistake, may be more like measurement estimation. Symbol

sense is likely to be a very practical outcome of algebra, and deserves much further study.

The duality between form and content which Jim Kaput emphasizes can also be interpreted

as part of symbol sense.

Stability is a very practical aspect of many mathematical models of the real world,

and deserves to be included throughout the curriculum. A small error in measuring each

side of a box will create how much error in its volume, in its surface area, or in the length

of a ribbon around it? A calculator makes such really useful investigations actually

possible. If you are going to triangulate, where should you stand? Why is it so difficult to

hang a picture the way some other family member wants it hung? A talk at the 1994

NCTM Annual Meeting, and hopefully a paper, will go further into this fascinating topic.

Back-of-the-envelope computations, rough approximations on how something will

come out, are bread-and-butter for users of mathematics in business and industry. Often

you cannot investigate all possible alternatives in a given situation in detail. You must

eliminate many of them by quick approximations, and concentrate on the most promising

ones. Another delightful example of what the employer wants from algebra.

There has been discussion at this meeting of "big themes." Big themes in

mathematics are often mentionedfunction, chance, change, structure, number, operation,

dimension, and space are just a few. Here is the beginning of a list of big themes of

mathematical modeling: stability, optimization, absolute standards versus special cases,
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estimation, encoding, choosing among alternatives, the algorithmic point of view, linearity,

feedback, system, signal and noise, and periodicity. I have intermixed form and content

themes.

Having shown, I hope, some of my enthusiasm for modeling in the algebra (and

mathematics) curriculum, let me express one particular worry which is unresolved in my

mind. Every real situation is more complicated than you can possibly handle

mathematically, and modeling involves critical decisions on what to keep and what to

throw away. In all honesty, part of those decisions, for a professional, is prior knowledge

of the mathematical area which is likely to result. You may be less likely to want to keep

that cubic term if you know that it will probably make further analysis hopelessly difficult.

Try it first without that term, and see if the results make sense in the real world. If

students are learning their mathematics from the motivation of the model, how can they

make such decisions based in part on knowing the mathematics already? I suppose that it

will be a spiral process. Arthur Murray didn't advertise that "If you can dance, you can

walk;" it was the other way around. I want to see the spiral work.

In this brief paper, we have taken a broad view of technical work force. The

mathematical needs of everyone from apprentice technical assistants to R & D engineers

have been in the back of our minds. In the current reality of mathematics education, the

question of remedial algebra cannot be ignored. Developmental mathematics has all too

often been nothing more than a repetition of what the student has failed to learn once

beforeonly louder! In my opinion, this is less likely to work than a new approach. Both

the applications point of view and the new technology are promising in this connection. An

algebra experience centered around the usefulness of the subject may succeed where

previous attempts at rote learning did not, especially with an older student. The use of

graphing calculators in algebra has recently been shown to be really effective in improving

both the spatial visualization and the conceptual understanding by girls at the college level

(Shoaf-Grubbs 1992), and I would expect this approach to have broader applications.

Incidentally, she also found that the calculator improved the connections that students

made across representationstables, graphs, and formulas.

I should like to close with reference to a point of view on science and mathematics

education which I have recently read and found both intriguing and disturbing. For most of

the past 300 years, it is claimed, the world has been creating science and mathematics,
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and producing people to do this creating, at an exponentially increasing rate. This can be

documented, for example, by the growth in the number of scientific journals. Now if you

say it this way, it is clear that this can't continue, and in fact the curve starts looking linear

rather than exponential about 1950 (cf. Goodstein 1993). I think that government and

industry fueled the exponential in employment for perhaps another 20 years after that. But

our entire educational system in mathematics and science has been designed, and even

optimized, to feed this greedy exponential. We probably produce 5 times the number of

Ph.D.'s needed for the preservation of the species, and only the exponential growth in

academic and industrial research positions kept this system goinguntil recently! We

simply may not need that many any more!

But if this were to be true, then we no longer need to design our school and college

educational experiences for the primary purpose of producing future Gausses (as Dan

Teague likes to say). The algebraic experience in many high schools is optimized so that

any potential future mathematician will be thrilledand will not be overlooked. It isn't quite

so good for everybody else! It seems likely that a much broader range of students will be

thrilled by an algebraic experience centered on the potential usefulness of the subject. If it

is true that enough future mathematicians will rise to the top regardless, then this may be a

net gain for society. It was Bogoliubov, I think, who recommended that all mathematics

Ph.D.'s should be in applied mathematics, and a few of these should then be selected to

study pure mathematics! I don't wish to mislead the discussion with such a wild

extrapolation. Let me just conclude by reminding us all of the fact that the usefulness of

mathematics is extremely broad and all-encompassing, and that the needs of employment,

when we look at them in detail, may provide an excellent focus for the rethinking of school

mathematics in general, and algebra in particular.
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Reshaping Algebra to Serve the Evolving Needs
of the Technical Workforce

Solomon Garfunkel
COMAP, Inc.

A response to Algebra and the Technical Workforce

It is, of course, impossible (as usual) to find anything in Henry's talk to disagree

with. To a large extent, his sentiments represent the philosophical underpinnings of all of

COMAP's efforts over the past 13 years. Our work on the ARISE project is in many ways

a natural consequence of these beliefs. We are attempting to create the curriculum

materials that embody these ideas and are immediately usable by teachers and students as

their basic high school offerings.

Henry has made the case for presenting algebra in real modeling situations more

eloquently than I can. I will not attempt to restate his arguments. But the potential

problems he raises need to be addressed. All of today's successful modelers (at all levels)

came through the standard secondary school algebra courses we now wish to change.

Henry's early algebra education and mine looked quite alike. Modeling and applications

came to all of us as an epiphany. We learned to factor trinomials, we drilled and practiced

symbol manipulation, but somehow by some mysterious process we developed an ability

to apply these tools.

How did this noncontext driven curriculum give rise to (at least some) people who

now see so much of mathematics in context. The truth is that we don't really know.

Commonsense argues that a modeling-based introduction of algebra (and other

mathematics) should give rise to more and better appliers of mathematics in all of Henry's

senses. But we have little hard evidence.

I believe that the curriculum we are designing will get us closer to Henry's goals.

Perhaps this is an article of faith. But we must find out; we must experiment. The

potential good outweighs the potential problems.

Moreover, I firmly believe it is the tumult that counts. Curriculum reform implies

teacher education both in-service and pre-service. Everything is in flux. What do the
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standards mean in practice? What is modeling? What do I need to know about election

theory, coding, morphing? Am I teaching mathematics or political science or physics? Am

I a lecturer or a classroom manager? Which graphing calculator should I use? Which

computer? Do I let my students use them on the test?

I would argue that even though we have no assurance that our new curriculum will

be better than our old, this amount of change and uncertainty will by itself produce

positive results. Everything is on the table. We are re-examining our most fundamental

beliefs and practices. Through all of this, we become a stronger community and our

students the ultimate beneficiaries.

Finally, let me restate Henry's concluding remarks. Mathematics education should

not be about the education of mathematicians, but rather the much broader segment of the

student population who will need mathematics in work, as citizens, and in their daily lives.

I firmly believe that the curricula which emerge from this round of reform will continue to

produce outstanding research mathematicians. However, even if that is not the case, what

we are attempting to donamely, to provide a solid useful mathematical experience for the

widest possible student audienceis simply put, the right thing to do.

This position will not be universally accepted. Those of us who publicly express it

may very well feel the wrath of our colleagues. But it is necessary to be direct about this

message. Henry is fond of saying that all systems operate optimally, we simply need to

determine what they are optimizing over. The reason that this debate is so important is

that we are consciously attempting to change what the nation's system of mathematics

education optimizes. Consensus on this point will ultimately be the most important

contribution we can achieve.
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A Cognitive Perspective on the Mathematical
Preparation of Teachers: The Case of Algebra

Alba G. Thompson and Patrick W. Thompson
San Diego State University

Recently, I presented a task to a claSs of senior mathematics majors aspiring to

become secondary mathematics teachers. The class, which I taught, is the capstone

course in the majora course on mathematics curriculum and instruction in the secondary

school. The task was as follows:

Describe what you know about each of the following math ideas: slope,

covariation, rate of change, tangent, derivative. Which, if any, of these

ideas do you perceive as related? Explain.

I assigned the task after we had worked on various problems involving rate of

changeconstant, variable, and average rate of change. It was in the context of solving

such problems that I became aware of the students' instrumental understandings of what I

consider to be key ideas of the secondary school mathematics currculum. Curious about

what relationships they saw among these ideas, I decided to probe the nature and depth of

their understandings.

I regarded the task as important for several reasons. The ideas of slope, covariation,

rate of change, and derivative are all closely tied to the notion of function, and the notion

of function is thematic to the algebra curriculum recommended in current reform

documents (National Council of Teachers of Mathematics 1989; California Mathematics

Framework 1992), not just for the middle and high school grades but also for kindergarten

through fourth grade. Another reason for giving the task to my students was to chip away

at their compartmentalized image of the mathematics curriculum. I sensed that, for most of

them, slope was a topic in coordinate geometry which also popped up in calculus; tangent

was a topic in geometry as well as in trigonometry; derivative was a topic in calculus; and

rate of change was a topic that did not have a specific compartment in the curriculum, but

which appeared sporadically throughout, as in calculus word problems. I was unsure about

what the students would say about covariation. I was hoping that the assignment would
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cause them to reflect on what they knew about these ideas and that from such reflections

they would emerge with some grasp of the conceptual links among them.

The students took the assignment seriously, writing lengthy essays for each part.

What follows is a summary of their responses:

Slope was generally described as the difference of the ordinates of two

points divided by the difference of the abscissas. Some students included

graphs to illustrate the elements in the computational definition they gave.

Many students indicated that slope was a measure of the steepness of a line

and ;topped there. A few students referred to slope as the ratio of vertical

change to horizontal change and explained that in this sense slope was like a

rate of change.

Tangent was Lientified by most students in the geometric sense as the link

between slope and derivative. A few students related the trigonometric

tangent to the slope of a line, offering the tangent of the angle formed by the

line and the x-axis as an alternative method for computing the slope of the

line.

All students gave the textbook definition of the derivative of a function,

Many indicated that derivative, slope, and tangent were related since "the

derivative is the slope of the tangent line," and included graphic illustrations.

Few mentioned that the derivative itself was a function. No one commented

on the similarity between the computational definitions of derivative and

slope.

Most students indicated that covariation was not a recognizable term in the

mathematics curriculum and made no attempt at describing any meaning for

it. One student who looked up the term came up with a definition for "the

covariance of two random variables" the statistical cousin of the term she

sought, but did not identify the blood relation. Only one student identified

covariation as the fundamental link among the five ideas. He was an

engineer returning to the university for a teaching credential in mathematics.

Rate of change was connected to derivative only because derivative is

instant rate of change. Only a few students explicitly mentioned what it was

that changed.
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In summary, it is fair to say that except for covariation most students were familiar

with the terms and their definitions, and were able to identify and recall many of the

calculational techniques associated wit!' the concepts. However, except in the case of a

few students, there was little in their responses to suggest that these ideas were held in

relation to one another; that is, that they were part of a.conceptual system. In several

cases, incoherent responses were telling of a lack of clarity in the students' understandings

of the concepts. To illustrate, consider the following excerpt from one of the papers:

Slope is a measurement of the vertical change with respect to the horizontal

change of a line. This measurement of two distances (horizontal and vertical

for slope) is the notion of covariation; two things varying with respect to

each other. The rate of change is a measurement of the slope of a line. With

the tangent, it is my understanding (outside of triangles) that the tangent is

merely the slope. of a curve (line) at a certain point. Likewise with the

derivative; it can also be seen as the slope of a curve (at an interval).

Connecting the tangent and the derivative, the tangent is the derivative of a

function at the evaluated interval.

I chose to start by relating this experience with my class because it illustrates

concretely the importance of addressing not only what teachers should know but also how

they should know what they know. This is hardly a profound or insightful statement, but

one that needs to be stressed and clarified. In this paper, I address in a global manner both

what mathematics teachers should know and how they should know it in order to teach

algebra in grades K-12.

Knowledge Base for Teachers

For discussions about the mathematical preparation of teachers to be productive, it

is necessary to clarify what it is that they should be prepared for. Moreover, to be able to

specify what sorts of experiences they should be able to provide their students, we need

to be clear about what we want students to learn. Thus, discussions about teacher

education can be productive only to the extent that they are informed by a consensus and

a clear image of what students at different levels of schooling should learn. Furthermore,

our discussion needs to be informed by the rapidly growing research literature on the

learning and teaching of algebra, and by the recommendations set forth in reform
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documents regarding the development of understandings and competencies relevant to

learning algebra.

A K-12 Algebra Curriculum: A Focus on Functions

For several years a primary concern in mathematics education has been how to

incorporate aspects of algebraic reasoning into the elementary curriculum (Wagner &

Kieran 1989). That is to say, students' study of arithmetic is supposed to prepare them for

algebra, but for the majority of students it does not do so. How transitions between the

study of arithmetic and the study of algebra might be made is an important area of

research in mathematics education (see Kieran 1989 for an excellent review). Difficulties

caused by that transition is another important research area (Booth 1981; HErscovics &

Kieran 1980; Vergnaud 1988).

Our research (Pat Thompson's and mine( over the past 6 years started with the idea

that competence in algebra is founded in competent quantitative reasoning.' Since then

our work has suggested that an emphasis on quantities and quantitative reasoning early on

in the students' study of arithmetic provides a foundation that is not only necessary for the

study of algebra but that can facilitate students' access to it.

Understandings of quantity and quantitative relationships in dynamic contexts are

foundational to the functional approach to algebra advocated in curriculum reform

documents such as the NCTM Standards and the California Mathematics Framework: an

approach that focuses on functions, functional relationships, variables (in the physical

sense of varying quantities), and other function-related ideas. In A Call for Change, the

MAA endorses such a functional approach by specifying related competencies for the

preparation of K-4, 5-8, and 9-12 teachers.

Curricular reform documents, however, do not explicitly address the central role of

quantities and quantitative reasoning in a functional approach to algebra. By this omission,

they fail to provide proper guidance to teachers on how they might approach a treatment

of functions in the early grades. From our perspective, to ground the development of

algebraic thinking on the notion of functions and functional relationships without, in turn,

grounding these on understandings of quantities and quantitative reasoning in dynamic

situations, is like building a house starting with the second floor. The house will not stand.

While the desirability of a functional approach over other approaches to bringing

algebra into the early and middle grades may be debatable, I will not undertake such a
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debate here. Rather I will take this forming consensus as a point of departure and try to

clarify the understandings and competencies teachers will need in order to implement the

recommended instruction in those grade levels. I will also mention some of the difficulties

they are likely to encounter. In regard to high school, I will discuss issues of generality and

structure, suggesting ways in which a perspective of algebra as generalized arithmetic

might be brought to complement the developing functional perspective introduced in the

earlier grades. Issues of representation (notation and conventions) and the role of

abstraction in the study of structure will be addressed along with their implications for the

preparation of secondary teachers.

Implications of a Functional Approach for the Preparation of Teachers

Because we view quantitative reasoning as foundational to the study of algebra, we

believe that the preparation of all teachers should be aimed at bringing about a

reconceptualization of arithmetic in terms of quantity and quantitative operations. I say all

and not just elementary and middle school teachers because such a reconceptualization

provides a foundation for understanding functions that few secondary mathematics

teachers appear to have. The case of my students, related in the beginning of this paper, is

a case in point. Few of them viewed the concepts in the task as related to the idea of

functions, except for derivative, and only one recognized the terms as having to do with

covariation of two or more quantities. In their responses, few students used a language

that spoke of an awareness of the concept of functional relationships and covariation as

the common conceptual thread among the ideas in the taskeven after probing. For

example, in response to the students saying that slope was synonymous with steepness, I

presented several graphs of y = 0.5x 1 in separate sets of axes with dif:arent scales. I

then asked them to compute the slope of the line in each case and posed the question: "If

slope and steepness are the same, then how come these lines have the same slope, but

are not equally steep?" Although the students recognized the effect of the scale on the

steepness of the lines, they were unable to offer an explanation of what slope actually

measures or of its relevance as a mathematical idea.

To explain what a reconceptualization of arithmetic in terms of quantity and

quantitative relationships might entail, I first need to clarify what we mean by quantitative

reasoning and by several other constructs that are essential to such a conceptual

restructuring.
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An Example of Quantitative Reasoning

Here is an example of what we mean by quantitative reasoning. Two approaches to

solving the following problem are depicted: an algebraic approach and what we call a

quantitative approach.

Brother and Me

I walk from home to school in 30 minutes, and my brother takes 40 minutes.

My brother left 6 minutes before I did. In how many minutes will I overtake

him? (Krutetskii 1976, p. 160)

An algebraic approach would be to set up an equation, such as (6+ t)d/40 = t

d/30, and then solve for t. This is a standard approach, and any problem like this one

typically appears in an algebra textbook.

On the other hand, this problem can be approached in a much more "situation-

sensitive" manner. Here is an example of one such chain of reasoning:

Imagine myself and brother walking: I see brother in front of me, and all I

notice is the distance between us. What matters is how long it takes for that

distance to become zero.

The distance between us shrinks at a rate that is the difference of our

walking speeds.

I take 3/4 as long as brother to walk a given distance, so I walk 4/3 as fast

as brother.

Since I walk 4/3 as fast as brother, the difference of our speeds is 1/3 of

brother's speed.

The distance between us shrinks at a rate that is 1/3 of brother's speed. So

the time required for that distance to become zero is 3 times the amount of

time brother took to walk it.

Since brother had a headstart of 6 minutes, I will overtake brother in 18

minutes.

If we take this example as illustrative of a type of reasoningwhat we call

quant'tative reasoningand if we take quantitative reasoning as an objective of arithmetic

instruction, then problems like the one discussed above can be included in the middle

school and junior high curriculum.' To take quantitative reasoning as an objective of

instruction, however, it helps to have a clear, detailed image of the mental operations and
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conceptual structures that enable quantitative reasoning to happen. A complete discussion

of such a model can be found in a paper by P.W. Thompson (1990). Here I will simply

describe some key constructs.

But before continuing, a caveat is in order. "Students' quantitative reasoning" is

almost an oxymoron. For the most part, students do not reason quantitatively in school

mathematics. Textbooks and curricula do not promote quantitative reasoning (Fuson,

Stigler, & Bartsch 1989; Porter 1989; Stigler, Fuson, Ham, & Kim 1986). Many sources

suggest that students rarely reason in terms of quantitative operations. Rather, their

thinking is dominated by numerical operations, which are unrelated to quantity (see P.

Thompson 1990). It would be surprising to find many teachers teaching for quantitative

reasoning since a large portion do not reason quantitatively themselves (Post, Hare!, Behr,

& Lesh 1991). So, from the beginning we are in the somewhat awkward position of

speaking of a particular type of reasoning that is rare, but which should be a primary aim of

instruction in the elementary, middle, and junior high gradesparticularly of instruction

dealing with functions and functional relationships. Our work has shown that it is difficult

for students to develop a grasp of change, variability, and covariationall key to

understanding functionswhen their thinking is confined to reasoning with numbers (as

opposed to quantities) and numerical operatio.:s (as opposed to quantitative operations),

even when that thinking is grounded in contextual settings.

Constructs Relevant to Quantity-Based Reasoning

Several key constructs form the core of the conceptual structures that enable

quantitative reasoning. An explanation of these constructs is necessary in order to speak

with precision about cognitive objectives for which instruction might aim. A brief

description of those constructs follows.3

Quantity: A el:lathy of something that can be measuredfor example, my

height, the area of this room, barometric pressure, population density,

someone's age.

Basic Quantities: Number of things, difference, ratio, and rate.

Difference: A difference of two quantities is the quantity by which one of them

exceeds or falls short of the other.

Ratio: A multiplicative comparison between two quantities.

Rate: A multiplicative comparison between two quantities where one quantity's
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value is conceived as varying in constant ratio with variations in the value of the

other. (See Thompson & Thompson 1992, for a more elaborate and precise

treatment of rate.)

Quantification: A process of direct or indirect measurement.

Quantitative Operation: A quantitative operation is conceived when two

quantities are taken to produce a new quantity.

Reconceptualizing Arithmetic: A Quantitative Approach

To take quantitative reasoning as an objective of instruction in arithmetic, teachers

will have to reconceptualize the arithmetic curriculum in terms of quantities and

quantitative operations. This will entail the development of a conception of arithmetic

instruction that is grounded in situations in which students have to reason in terms of

quantities and quantitative relationships, with the objective of using notation (arithmetic) to

represent their reasoning. This approach offers students opportunities to "reason

algebraically" in arithmetic. By reasoning algebraically in arithmetic we mean

Reasoning about relationships;

Using arithmetic representationally;

Reasoning about quantitative situations with diminished attention to

numerical informationnumerical information is understood as being

"incidental;"

Reasoning about quantitative situations in the absence of numerical

information; and

Constructing formulas.

In short, to reason algebraically in arithmetic means to reason relationally about

quantities in some contextual situation. It is important to note that to us the phrase

"reasoning algebraically in arithmetic" does not necessarily entail doing calculations,

reasoning with numbers, or manipulating symbolic expressions.

Quantity-Based Algebra

Students do not have to undergo the radical shift in their thinking that traditionally

has marked the transition from arithmetic to algebra. The difference between quantity-

based arithmetic and quantity-based algebra is one of representation. While in arithmetic

we use the notation of arithmetic as the language of representation, in algebra we must

introduce a new notation. Now we deal with situations in which the value of one or more
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quantities vary, therefore we must use symbols other than numerals to represent the

quantities' varying values. Thus, the transition is marked by the introduction of letters as

variables in their literal senseto represent the varying values of a specified quantity in

some context. The key idea, the idea of representational uses of notational schemes,

however, is not a new one. I should clarify that by stating that the transition can be a

smooth one I do not mean to imply that students will acquire instant facility in the use of

algebra notation.

An example can help illustrate how representational uses of algebra notation can be

introduced in quantity-based algebra:

Banana Peeling Contest

Ivonne and Daryl are professional banana peelers. Ivonne peels an average of
5.5 bananas per minute; Daryl peels an average of 3.4 bananas per minute.

Ivonne decided that she would get a head start (she cheats), so she peeled
15 bananas at home and carried them to Ivonne and Daryl's Banana-peeling
Office. When she walked into the office she found that Daryl had gotten
there early (he cheats, too) and that he had peeled 93 bananas. She began
immediately to catch up.

In this situation, let x stand for the number of minutes that have gone by
since Ivonne began to peel bananas at the office.

a. Do this for each of the following formulas: Fill in the blank with a name for
the quantity that the formula evaluates.

= 5.5x
= 3.4x

b. Do this for each of the following quantities: Write a formula that evaluates
the darned quantity:

Total number of peeled bananas Ivonne has x minutes after arriving at the
office

Total number of peeled bananas Daryl has x minutes after Ivonne arrived at
the office
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c. What do these open sentences stand for in terms of the situation in which
Ivonne and Daryl find themselves:

5.5x = 3.4x + 93
3.4x + 93 = 5.5x + 15
3.4x = 5.5x + 15

d. In how many minutes after she starts peeling bananas at the office will
ivonne catch up with Daryl?

The task illustrates the use of algebraic notation as a representational language.

Algebraic expressions are introduced in contextual situations as formulas that evaluate

embedded quantities. (We used part d cf this task to have students represent values with

expressions, graph functions, interpret the graphs in relation to expressions and functions,

and interpret points of intersection in relation to functions and quantities.) In tasks similar

to the one shown, equations are introduced as (1) statements of the equivalence of two

expressions or formulas for a single quantity's value, or (2) as a formula for a quantity's

value together with a value that the formula must yield. The latter affords the conceptual

connection between the notion of an algebraic variable as representing the varying value of

a quantity and the notion of a variable as an unknown !fixed) value of a quantity. The

metaphor of a "freeze frame" in a film conveys the idea of the variable as an unknown.

In quantity-based algebra the fundamentals of the "grammar' of algebra are

developed in a way that parallels current thinking on how students should learn the rules of

regular grammar: purposefully, to clarify written communication of ideas. It echoes the

statement in Everybody Ccsnts (1989): "Doing mathematics is much like writing. In each,

the final product must express good ideas clearly and correctly, but the ideas must be

present before the expression can take form..." (p. 44)

Two consequences of teaching arithmetic and algebra with a quantitative reasoning

emphasis are that (1) students are more likely to develop an appreciation of algebra as a

powerful tool for supporting complex reasoning (recall Brother and Me and the complexity

of a quantitative approach to solving it); anti (2) we may have to rethink what problems to

consider as algebra problemswhat appear as algebra problems in many textbooks and

tests may turn out to be complex arithmetic problems.
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Here is ar, example of a problem that makes a compelling case for the use of algebra

and illustrates its power as a tool in reasoning.

An American in Paris

Jose is an American who lives in Paris. His annual income of $65,000 is

subject to taxation by both the U.S. and the French governments. His tax

obligation to the U.S. is 30 percent of what is left of his income after paying

French tax. His tax obligation with the French government is 18 percent of

what is left of his income after paying U.S. tax. What percent of his income

is left after paying taxes? How much does he pay in taxes to each

government?

Note that in this problem operational reasoning will not carry us very far because of

the self-referential nature of the quantities. Contrast An American in Paris with the

following problem which was submitted for inclusion in a standardized exam with the

intent of testing students' skill in setting up equations to solve problems.

Mindy's restaurant can seat a maximum of 102 persons. Thirty percent

of the tablas can seat at most 2 people and the rest can seat at most 4

people. How many of each type of table are there?

Students who are competent quantitative reasoners can solve this problem as follows:

The ratio of tables-for-2 to tables-for-4 is 3 to 7.

Since there can only be a whole number of tables, the number of tables- for-2

must be a multiple of 3 and the number of tables-for-4 must be a multiple of 7.

3 tables-for-2 and 7 tables-for-4 yield a total of 34 seats; 6 and 14 yield a total

of 68 seats; 9 and 21 yield 102 seats. Done!

While there is nothing wrong with this student's reasoning, this solution demonstrates that

a correct solution to the problem cannot be, taken as a measure of the student's ability in

the skill being tested.

Quantity-Based Instruction and Access to Algebra: The Bridge Between Out-of-
School Mathematics' and School Mathematics

The following excerpt was taken from an early draft of The California Mathematics

Framework (1990). I include it for its relevance to teaching algebra.

Students come to school with a wealth of experiences; they could be said to be

experts about their own lives and the culture in which they are growing up. This
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personal and cultural expertise is a critical access point. Students need learning

experiences that draw on their expertise and connect it with the experiences of

others. Connecting the way things make sense outside of school and the way

things make sense at school is especially important for students whose out-of-

school culture is at some distance from the in-school culture. If students don't

have ample opportunities to make connections between their personal lives and

classroom learning, the sense-making skills that they bring with them will be less

likely to be connected with classroom activities and their access to the

curriculum diminished. In other words, explicit connections between out-of-

school and in-school experiences increase the likelihood that students will

connect their out-of-school and in-school thinking. Rich, complex activities in the

classroom allow for several points of connection; simplified, abstract activities

preempt the opportunity for personal connections and thereby diminish acce.s

Our work suggests that quantity-based arithmetic and algebra facilitates students

making sense of the symbols and notational schemes of arithmetic and algebra. The

language of quanta ies, as opposed to the language of numbers and symbols, provides a

conceptual bridge between their out-of-school and in-school experiences.

Difficulties Teaching Quantity-Based Algebra and Arithmetic

We have learned from our work with teachers that this type of conceptual approach

to arithmetic and algebra poses a great challenge for them, especially for those who are

well versed in the use of arithmetic/algebra as a tool for reasoning in contextual problems.

These teachers show a tendency to use a computational language which often gets in the

way of their attempts to use everyday language to discuss mathematical ideas. This

difficulty appears to stem from the way they have come to represent these ideas to

themselves. They have come to use ariuimetic/algebra representationallythey can read a

situation into arithmetic or algebraic expressions, and they can use those expressions to

represent their understanding of a situation. In other words, they are "good" quantitative

reasoners themselves; they have come to use arithmetic/algebra in two ways

simultaneouslyas a representational system and as a formula system to express an

evaluation.

Paradoxically, this very competence poses a shortcoming in regard to teaching. These

teachers' quantitative conceptualizations are often encapsulated in the language of
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symbols, operations, and procedures. Thus, they have no other means outside the

language of mathematical symbolism and operations to express their conceptualizations.

The language of arithmetic/algebra serves them well as a personal representational system,

or as a system for communicating with other competent quantitative reasoners. Yet, that

language serves them poorly when trying to communicate with their students who know

the tokens of the teacher's language, but have not constructed the meanings and images

that the teacher has constructed to go along with them.

There are two consequences of teachers having rich quantitative meanings

encapsulated within the language of arithmetic/algebra which often manifest themselves in

teaching. One is that they often short-circuit what starts out as a rich, conceptual

conversation with students by suddenly shifting to express a complex idea in the language

of calculations. We have witnessed how students' eyes glaze over when this happens in

the classroom. The second consequence is that these teachers often misinterpret students

when the latter express themselves caiculationally. The teachers either read too much into

a student's statement (injecting their own rich meanings into the students' calculational

statements), or they try to make quantitative sense of students' jumbled calcuiational

statements when the students themselves have not attributed any quantitative meaning to

their calculations.

Teachers' understandings of contextual situations in ways that they can make explicit

only by means of symbols and procedures, and their imputation of those meanings to

students' calculations and actions, are often the cause of breakdowns in communication

between them and their students in the classroom. We have witnessed many such

breakdowns. The rich quantitative meanings that the symbols and procedures embody for

the teacher are often insufficient for understanding and adequately assessing the source of

students' difficulty. In order for teachers to understand what holds their students back,

they need a deep understanding of the subtleties and cognitive complexities inherent in

understanding mathematics conceptually (Thompson & Thompson, in press al. In addition,

in order to be able to help their students, teachers need another language besides the

language of mathematical formalisms to express their ideas. They need an unaffected,

nontechnical language (Thompson & Thompson, in press).
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From Quantity-Based Algebra to the Study of Structures

Sfard (1992) notes that mathematics can be thouaht of as "a hierarchy in which what

is conceived operationally, namely as a computational process, on one level is reified into

an abstract object, or conceived structurally, on a higher level." She describes the

historical evolution of algebra as "a constant attempt at turning computational procedures

into mathematical objects, accompanied by a strenuous struggle for reification." Supporting

the notion that ontogeny recapitulates phi, logeny, Sfard draws a parallelism between the

historical struggle for reification and the struggle of students making the transition from

operational algebra to structural algebra. According to Sfard, the transition is problematic

because it requires that "operational thinking be replaced by structural (thinking)." That is,

it requires that students come to grips with the nrocess/product duality of algebraic objects

(e.g., they must be able to conceive 5x-square root 2 both as a computational process and

as its product).

From the brief description of quantity-based arithmetic given earlier, one can see that

attention to structure need not be postponed until the study of formal algebra. In quantity-

based arithmetic and algebra, students deal with structural thinking at the same time they

deal with operational thinkingboth are viewed as essential aspects of using notation

representationally and as such are treated simultaneously. The development of operational

thinking need not precede the development of structural thinking. As discussed earlier,

issues of generality of processes can be dealt with early on as students engage in analyses

of contextual situations in terms of quantitative structuresthat is, in terms of networks of

quantities and quantitative relationships (Recall Sally & John). Expressions (numerical or

algebraic) are used to describe both a solution process and a quantity's value. Thus, from

the outset students are dealing with the notions of structure and generality, and switching

between operational and structural ways of thinking. The fact that these experiences start

early on in their study of arithmetic makes the transition smoother. What is currently

problematic about the transition is that, in algebra, students encounter a way of thinking

that is not only new to them but that clashes with the deeply ingrained way of thinking,

namely operational, that has dominated their school mathematics experience.

From our experience working with teachers we have learned that a critical element in

allowing structural thinking early on is the availability to both teachers and students of a

natural and unaffected language a language other than that of number and arithmetic
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operations which tends to force students and teachers into operational modes of thinking.

It is reasonable to expect that, because of its efficiency and power, once students

have gained access to algebraic notation, that they will want to use it whenever

appropriate. Yet, a number of studies (Clement 1982; Clement, Lochhead, & Soloway

1979; Harper 1987; Sfard 1 9871 have documented a resistance on the part of students to

use algebraic notation and a tendency to use verbal methods instead. Sfard (in press) notes

that students' spontaneous use of verbal methodsthat is, when such methods have not

been part of their instructionspeaks of the "inherent difficulty of the transition from an

operational to a structural approach" which, she observes, parallels the history of the

development of algebra.

I wish to offer an alternative explanation that is not quite as deterministic. The

findings of students' preference for verbal methods may be more a reflection of how they

have come to know the notation of algebra, than of an inherent difficulty in learning the

language itself. The verbal, rather than the symbolic language, is the only sense-making

language available to students who have not learned algebra notation representationally.

Preparation of Preservice and Inservice Teachers

To deal with the question of what should be involved in preparing teachers to provide

students with quality algebra instruction, we cannot limit our discussions to preparing

algebra teachers, because we cannot prepare "algebra teachers," we can only prepare

mathematics teachers. Thus, in addition to clarifying what it is that they should be

prepared foras I have attempted to do vva must also address issues of beliefs,

orientations, and imagery that cut across topics and courses.

Many, perhaps a majority of, prospective mathematics teachers have never

experienced levels of conceptual understanding that current reform efforts intend for the

students they will teach. To these future teachers, mathematics is about learning and

performing rituals for getting answers to computational questions. Moreover, persons

entering education programs commonly hold the very same beliefs and misconceptions

about the nature of mathematics that research suggests are among the primary causes of

U.S, school students' low mathematical competence. Thus, mathematics courses in the

p:fiparation of teachers, being based on the assumption that the courses will extend their

(valid) mathematical knowledge, end up not addressing insidious beliefs and

misconceptions held by these prospective teachers. Worse yet, they often end up
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reinforcing those beliefs and misconceptions which will dominate practical decisions these

people will make about what is important to teach and what is important for students to

learn.

Discussions about what should be included in programs for the preparation of

mathematics teachers must extend beyond the specification of courses and course topics

in the case of preservice teachers, and must include more than illustrative activities in the

case of inservice teachers. Those in charge of the design of teacher education programs

must deal with the issue of teachers developing appropriate images to guide their decisions

and actions.

If curricular reform is to happen in classrooms, then teachers will have to teach from

the basis of a conceptual curriculum. In order to be able to do this, they must develop a

conceptual orientation toward the subject matter. Elsewhere ;Thompson, A., Philipp,

Thompson, P., & Boyd, in press), we have noted that a teacher with a conceptual

orientation is one whose actions are driven by:

An image of a system of ideas and ways of thinking that she intends the

students to develop;

An image of how these ideas and ways of thinking can develop;

Ideas about features of materials, activities, and expositions, andabout students'

engagement with them that can orient students' attention in productive

waysways that generate "methods" that generalize to other situations; and

An expectation and insistence that students be intellectually engaged in tasks

and activities.

Most prospective teachers go through teacher education programs without developing

conceptual orientations. A case in point is that of my own students, described at the

beginning of this paper. None of them had a well-developed system of ideas of which the

notions of function, slope, covariation, rate of change, and derivative were a part, even

after having completed 16 semester hours of calculus/analysis. Clearly, we need to look for

solutions that do more than specify courses and topics prospective teachers should take.

In the case of inservice programs, we need to do more than prescribe activities aimed

at learning specific pedagogical and managerial skills how to use cooperative learning

arrangements, portfolio assessments, graphing calculators, computer technology). We

must make clear what the contribution of such activities to a coherent vision of
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mathematics learning and teaching is. We must ensure that they are assimilated into a

coherent system of ideas, principles, and ways of thinking that can guide teachers'

actions. Otherwise, their practical value is drastically diminished, for their implementation

will be unprincipled and indiscriminatingjust as in the case of students applying skills

they have learned in a decontextualized and isolated fashion.

The "vision" of mathematics teaching sketched in the NCTM Standards is one many

teachers have difficulty envisioning because it is incompatible with the images of

mathematics teaching and learning they have abstracted from their experiences as

students. By asking them to incorporate new activities into their teaching, when it is not

clear to them (or us!) how these activities fit into a coherent system of ideas or how they

help promote specific ways of thinking in their students, our instruction is flawed in a

manner similar to the way wa claim instruction in the schools is flawed. We must take care

to insure that novel ideas, materials, and activities are integrated into mainstream teaching

of mathematics in a principled, coherent manner, and that their contribution to students'

learning is very clear to the teachers. Otherwise, the net effect of our efforts will be one of

cosmetic change in the classroom, not of substantive change.

To prepare teachers to teach mathematics (algebra), we must help them build images

of systems of ideas and ways of thinking that they will, in turn, want their students to

develop. In addition, we must help them build images of how these ideas and ways of

thinking can develop in their students. To make this happen may prove to be difficult for

numerous reasonsat least two are important. First, it will require that we, ourselves,

develop clear images of what we want our students to learn and ways of thinking we want

them to develop. Furthermore, our actions will need to be driven by an understanding of

how these ideas and ways of thinking can develop in our students. This will require that

we develop a cognitive perspective in our own teachingone that takes frequent notice of

what our students are indeed learning from the experiences we provide. This will be

difficult because such a perspective seldom underlies instruction at the college level.

Second, students have to develop a commitment to creating these images and ways of

thinking and work hard to do so. It should not be possible for them to get by with the

minimum. This will be difficult because of unevenness in the level of expectation across

courses and professors.

1 1 1

1 1 I



To be well prepared to teach, teachers must also develop clear ideas about features

of materials, activities, and expositions that can orient their students' attention and

thinking in productive ways. My experience has been that most prospective secondary

mathematics teachers have very limited and impoverished images of the secondary school

mathematics curriculum. How their college experience can help enrich those images is

something we need to think about.

It should be clear that when specifying educational experiences for teachers, we need

to go beyond specifying courses they must take and topics they should study. We need to

focus on general principles of teaching and learning mathematics as well as on those that

are specific to the teaching of algebra, be it elementary, intermediate, or advanced.

As we struggle with the issue of how to make mathematics accessible to more

students, perhaps we also need to consider how to be more selective about who is

inducted to be a mathematics teacher.

Those who can, do; those who understand, teach.

Lee Shulman
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Notes

1. This idea is similar to a view of algebra as "generalized arithmetic," but is different in
key aspects for we view arithmetic as also founded on quantitative reasoning.

2. Krutetskii (1976) considered this problem to be an arithmetic problem.

3. For a complete discussion of a model of the cognitive processes and conceptual
structures that enable quantitative reasoning, which has provided the theoretical basis
for our work, see A Theoretical Model of Quantity-based Reasoning in Arithmetic and
Algebra, P.W. Thompson (1990).
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Preparing Teachers to Teach Algebra for All:
Preliminary Musings and Questions

Marjorie Enneking
Portland State University

In order to achieve "algebra for all students" teachers must believe that all students

can and should learn algebra and must be prepared to develop and teach programs which

include algebra for all students. They must have a clear picture of what algebra is and

what its role in mathematics and in other fields is, and they must be prepared to teach

algebra to students with tremendously varying backgrounds, needs, and interests. We at

the college level are responsible for the preparation of these teachers. This responsibility

encompasses the mathematics and education programs offered for prospective teachers,

and the relationships of those programs and the faculty who design and conduct them. It

also encompasses the preparation of elementary and middle, as well as high school,

teachers. In considering the preparation of teachers, I found it useful to keep in mind both

content knowledge, especially Hares idea of concept image, and Buccino's content

pedagogy, or pedagogical knowledge of content.

The mathematics community has long recommended that prospective high school

teachers have a substantial mathematics background, usually equivalent to a major in

mathematics. We might ask what aspects of the typical undergraduate mathematics

program provides the appropriate background to help students become teachers prepared

to teach algebra to all high school students. How are our courses designed to facilitate the

development of those concept images? Do students in such courses gain a deeper

appreciation for the roles of abstraction and symbolization in mathematics? Will they see a

connection between the algebra taught in high school and these courses? What do we

expect students to see beyond the definitions, theorems, proofs, and examples presented

in the course? In what way are these courses designed for students to experience and

reflect on the process of abstraction, of generalizing and building on systems encountered

in other courses? Will students have opportunities to conjecture, explore, discuss, create,

and explain, as well as to deal with formally stated theorems and proofs? Will they be led
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not only to understand, appreciate, and construct proofs but also to recognize and value

these other important facets of doing mathematics?

We may wish to ask how these and other mathematics courses can be designed

and taught to help students

Develop a sense of algebra as a unifying language of (means of

communicating in?) mathematics and perhaps to appreciate the history and

development of algebra;

Recognize the role algebra plays in connecting mathematics to areas outside

of mathematics and learn how others use and view algebra;

Develop an understanding of the high school mathematics curriculum, and

the role of algebra in that curriculum, as it relates to collegiate mathematics

and as it relates to the needs of all high school students, regardless of their

future educational or career goals; and

Encounter experiences in learning mathematics which will provide a rich

background for learning to teach algebra to all students, including non-

college bound students.

The focus in my thoughts for the preparation of secondary mathematics teachers is

on the mathematics courses, since typically a program for prospective secondary

mathematics teachers consists of 4 years of courses on mathematics and perhaps only one

or two individual courses related to the teaching of mathematics. The experiences as

students in learning mathematics thus plays a major role in determining secondary

teachers' views of mathematics and beliefs about teaching mathematics in general and

algebra in particular. It is essential, of course, that students also have exemplary courses

and field experiences which further develop their pedagogical knowledge of algebra, an

understanding of the diverse needs of students who will be in their courses, and skills in

teaching to meet these needs. But these components of the teacher's preparation can only

build on the firm foundation of attitudes, beliefs, and knowledge developed in mathematics

courses.

Programs for prospective elementary teachers may include a year-long sequence of

mathematics courses for prospective teachers, but more commonly include only one such

mathematics course and at most one course on teaching mathematics. How will these

prospective teachers develop an understanding of the need to prepare all elementary
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students for success in algebra and the ability to do so? How will they learn that

mathematics taught at the earliest levels can provide the opportunities for exploring,

generalizing, abstracting, justifying, and symbolizing in mathematics, which are the basis

for learning algebra? How will they learn enough ahout the algebra which is to be taught to

all students that they can design and teach a program which prepares their students well

to learn algebra? How can the content and teaching of mathematics and education courses

for elementary teachers instill in prospective teachers the concepts, attitudes, and skills to

learn how to offer this kind of program? What is the responsibility of mathematics and

education departments to offer and nurture such courses?

The preparation of middle school mathematics teachers is an area of particular

concern to me, since these are the teachers who will provide many students, usually those

deemed to be most capable in mathematics, with their first substantial experiences in

algebra. It is very common that middle school teachers of mathematics have an elementary

teaching certificate, and hence possibly only the mathematics described above. There may

be no courses or field experiences specifically devoted to teaching mathematics to early

adolescents. What should the preparation of these teachers be, and what is the

responsibility for mathematics and education departments to offer such a program?

To this point the questions I have raised have been described in terms of preparing

prospective teachers. Just as important is the preparation for teachers already in the field

to help all students have success in learning algebra. Whose responsibility is it to help

current elementary teachersmany of whom themselves fear mathematics and feel

uncomfortable teaching itprepare their students for success in mathematics at the

secondary level? To help middle school teacherswho themselves may not know how to

graph a linear ,quationprepare to teach algebra? To help high Khoo] teachersgraph a

linear equationprepare to teach algebra? To help high school teachersoften with

experience in teaching algebra only to college-bound students, with those courses

designed as the first link in a chain leading to calculusthat all students can and should

learn algebra? To design and teach courses in which all students can in fact learn algebra?

I suggest that this is a responsibility of both mathematics and mathematics education

faculty, and that we must grapple with how to meet these needs in tandem with the needs

of prospective teachers.
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And so we may wish to ask about the mathematics and mathematics education

components of a program for teachers at any level: Where will the preservice or inservice

teacher develop an understanding of the importance of algebra for all students, the belief

that all students can and should learn algebra, and the knowledge and skills to offer such

programs? How will faculty learn to use a variety of diverse teaching strategies effectively

in reaching students with differing learning styles, backgrounds, and needs, thus modeling

teaching attitudes and techniques for preservice and inservice teachers? If a mathematics

program does not offer separate courses for prospective teachers, how should courses be

adapted to meet the needs of these students as well as students with different career or

educational goals? If an education program is too small to warrant separate courses on the

teaching of mathematics, how will students interested in teaching mathematics gain the

pedagogical knowledge of algebra and the skills to teach it? What avenues are there for

offering courses which integrate knowledge and pedagogical knowledge of algebra? In

programs for teachers or prospective teachers, how much focus should be placed on

teaching algebra, as opposed to teaching arithmetic, geometry, probability, statistics, or

topics from discrete mathematics to all students? How can mathematics faculty be

encouraged to, assisted in, and rewarded for taking an active interest in prospective and

inservice teachers of mathematics and programs for them?

I look forward to our discussion of these and many other interesting, important, and

possibly difficult questions during our colloquium.
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Algebra for All: Dumbing Down or Summing Up?
Lynn Arthur Steen

Mathematical Sciences Education r3oard

My taskto sum up the manifold discussions of the last 3 daysis necessarily

inchoate. Each of us takes from this conference a uniquely personal perspective based on

the particular working groups and discussions in which we participated. I do not pretend

that my remarks will provide either a synopsis or an executive summary. They are, rather,

a personal perspective on what I have heard these last few days. I'll try to follow the

conference mandate: to focus on a few big ideas, especially by providing a policy

perspective, emphasizing open questions, disputes, and omissions.

My notes from the discussions cover an enormous variety of topicsfar too much

for a one-hour summary. So, I adopted two principles of selectivity:

Omit ideas that have been widely discussed elsewhere during the last

decade; and

Omit issues that are not specific to algebra.

One consequence, for instance, is that I have made no attempt to cover the

workshop's wide-ranging and enormously helpful discussions about teacher educationnot

because it is less important, but because it is part of a larger discussion that has been

going on for quite a number of years and because it is not, except in rare instances,

uniquely related to the subject of algebra.

These two filters reducud my notes by at least two orders of magnitude. What

emerged was not much about AFA ("Algebra for All"), much less about the proposed new

acronym of AFAFA ("All for Algebra for All"). Most of our discussions seemed to be about

everything except algebra: teaching, literacy, modelling, mathematics, standards. The few

drops of new ideas about algebra that these filters let through from the gush of words at

this wo..(shop suggest that a more apt acronym might be AAnot as some have

suggested "Algebraists Anonymous," but more accurately, "Avoiding Algebra."

What is Algebra?

I'll begin with a brief review of various definitions of algebra, based primarily on the

lectures by Victor Katz and Mike Artir
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Calculating by rules (Early Islamic);

Determining unknowns;

Computations by signs and symbols (15th-16th C.);

Employing letters in reasoning about numbers;

Working with 'x' (the typical student's definition);

Study of arithmetic operations;

Simple and general concepts, not cumbersome computations 120th C.);

Study of general operations and operators; and

The language of mathematics (and of commerce, ...).

Prior to Emmy Noether, algebra was what most students believe it still is today:

calculating with letters to solve equations for unknowns. Only in the 20th century did the

more general notions arise that gave algebra its great powerthe power to become, in

Mike Artin's words, the "language of mathematics." Of course, it is also the language of

commerce and of technical discourse in many other areas of knowledge as well.

Before moving on I should remind you of a few of the lessons of history embedded

in Victor Katz' very informative opening lecture:

Historically, algebra was taught through artificial problems.

Historically, algebra was taught to the few, not the many.

Historically, algebra was taught not to find answers to useful problems, but

to develop general problem solving skills.

Historically, algebra of the 20th century evolved fromhence requires

mastery of the algebra of previous centuries.

These lessons lead to a key observaticn and a significant warning: "Algebra for All"

taught through realistic problems with reduced emphasis on complex manipulation to

provide skills needed for work violates all these lessons of history. Are we really ready fcr

such a revolution?

Major Themes

The major theme of this conference is very simple: Algebra is broken but

nonetheless essential. Algebra Ithe current manifestation of "Algebra for All" is not

serving anyone wellneither those who fail nor those who pass. Fortunately, good

examples show that we can do better: although the challenge of reform is daunting, we

know the direction in which improvement lies.
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Algebra is, in Bob Moses' apt phrase, a "new civil right." This idea encapsulates

the best expression of the motivation for the whole conferenceof the source of power

that underlies the concept of algebra for all. It encompasses a host of powerful ideas:

Algebra can democratize access to big ideas.

Algebra provides evidence of the power of ore's own mindan unparalleled

source of authority for youth.

Tracking, the chief alternative to algebra for all, serves primarily as an engine

of inequity.

Effective instruction requires a respect for diversity grounded in multicultural

perspectives.

A second major theme that I heard reflected in virtually all working groups is that

algebra in school should serve broad purposes, not just job-specific skills. Its goal is not to

convey the contents of a formulary, but to help students acquire the capacity to learn new

things. Under this theme, I group a number of common conference understandings:

Teach a few big ideas well, not many superficially.

In order for algebra to serve broad purposes it is essential that we develop

and value diverse ways through which students can succeed with algebra.

Algebra should be viewed rot as a particular course, as it most often is, but

as a set of ideas, skills, and habits of thought. Indeed, algebra should be a

strand everywhere throughout K-16, not just a separate course.

Typical college courses fail to model good instruction, thus sending improper

signals to students, schools, and prospective teachers.

Examples should precede theory; the specific should come before the

general.

Finally, throughout our conversations there ran a counterpoint of idealism versus

reality. This led to a third area of consensus: In making recommendations, we must

distinguish short-term (politically constrained) actions from long-term (unconstrained)

vision.

The "Story Line" of Algebra
We all agree that algebra is in part about symbols. We also seem to agree that

algebra is itself a symbol. There agreement ends. As I listened, I sensed that algebra is
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used by mathematicians, teachers, and the public as a symbolsometimes as a

codewordfor a number of different political and social agendas. Some examples:

What parents studied in schoolthe embalmed memories of a bygone era;

The contents of the algebra bookengraved authority;

Job screeninga hurdle for quality employment;

Requirement for graduationa mark of rigorous education;

Key to good jobsthe economic metaphor;

Motivator for high expectationsalgebra as the epitome of achievement;

Symbol of failure and phobiathe worst memories of school mathematics;

and

Filter for successa hurdle to ensure stability of the ruling class.

Yesterday Bob Moses asked for the "story line" of algebra. What can we say to

inquiring skeptics to convince them that algebra really is important? Yesterday no one

dared take up the challenge. We owe Boband ourselvesan answer. So let's provide it

now. Write 2-3 sentences on why you believe algebra is so important. Pick one of two

options according to your interests (see appendix A, Why Study Algebra?, for an edited

compilation of the responses):

Why algebra for all? (addressed to skeptical parents or school board

members)

Why take abstract algebra? (addressed to a college student or a prospective

high school leacher)

Various speakers promised to tell us, at last, just what algebra is. None did.

However, I found in my notes three categories of responses. Some thought in traditional

terms such as:

Logic and proof Symbol Sense

Use of variables Simple manipulations

Solving equations Modeling

Deductive reasoning

Others spoke in more abstract categories such as:

Generalized arithmetic Means to solve problems

Study of relationships Study of structure
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Henry Pollak challenged us to think about new connections of algebra

To spreadsheets

To stability

To data analysis

To algorithms

These divergent perspectives may help explain why we have found it so difficult to

define the essence of algebra, why we have so often avoided the very topic of this

workshop. As the elephant to the blind man, algebra appears very different to its many

different constituencies.

Language and Understanding

One of the more fascinating recurring themes of this workshop has been the various

speculations about the relation of algebra to language. It began with Victor Katz's many

historical examples of algebra problems posed and solved entirely in natural language. This

strand continued with Mike Artin's ruminations about the relations of language,

abstraction, numbers, and algebra.

Alba Thompson continued this theme by showing through many examples the

consequences of disjuncture of words from symbols. Many students see no meaning in

symbols, and their teachers frequently cannot convey meaning without using the very

symbols that their students do not understand. For example: Why does 0.3 = 0? How

can this be explained to a primary school student? Will the typical university course in

abstract algebra help convey to the prospective teacher an explanation that a young

student can understand?

Discourse about algebra is the key to keeping alive a capacity for reasoning and

proof. Ten words that students understand may be worth a thousand meaningless

symbols.

Algebra in the Workplace

A recurrent theme at this workshop is the changing role of mathematics in the

workplace. Today's schools and curriculum are the legacy of an era in which shopkeeper

arithmetic was the mainstay of workplace requirements for mathematics. Algebra for all is

motivated in part by the assumption that algebra is the key to well-paying jobs (for

individuals) and to a competitive work force (for society). Several themes emerged in

these discussions:
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Most mathematics used in work is just high school-level mathematics. Very

few individuals use college-level (calculus-based) mathematics in work

situations.

The curricular focus for work force issues is on the upper 2 years of high

schoolin Algebra II and its 12th grade successor. This is where the

school-to-work and tech-prep themes are most noticeable. One must

distinguish at this level three different intentions: pre-work, pre-college, and

pre-calculus.

Algebra is an "invisible culture" not recognized in the workplace. Neither

employers nor employees are aware o; the extent to which problem solving

skills honed in algebra are used in everyday workplace situations. It takes an

attentive observer to see the role played by mathematics in ordinary work.

Nevertheless, lots of good algebra can be found in the workplace, although

little of it appears in the classroom. For many reasonstextbook tradition,

teacher background, pedagogical difficultiesthe "applications" of

mathematics continue to be presented in isolation from the context in which

they arise.

Traditional curriculaparticularly school algebra textsteach mathematics

first, then applications. The rationale is to first master the tools, then apply

them to use. Modeling reverses that order: the problem context leads to the

mathematics. A modeling approach, which better fits workplace needs, can

clash with traditional curriculum since one cannot provide advance assurance

of which mathematics will be covered or learned.

College and University

Whether because it is my natural interest or because it is just such a complex and

important issue, the role of algebra in college seemed to command a lot of attention,

especially in the working group sessions. I heard four broad persistent worries in these

discussions:

1. The nature of high school-level algebra when taken in collegefrequently by

adults;

2. The need for sweeping reform in undergraduate mathematics in order to

improve the preparation of teachers;
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3. The "brick wall" students encounter in the first course in abstract algebra;

and

4. The evolving demands for tighter coupling between college-level

mathematical programs and the world of work, especially in the 2-year

colleges.

First a bit of terminology. By high school algebra I mean to include all the algebra

that leads up to calculus, including the contents of the course that traditionally has been

called college algebra. This is, roughly, the algebra of the 18th and 19th centuries. By

college-level algebra I mean to include linear algebra and abstract algebracourses

normally taken following calculus that form the heart of an undergraduate mathematics

major. One of the major problems of algebra as it is practiced in today's schools is the

lack of mathematical, pedagogical, and psychological connection between these two kinds

of algebrabetween the pre- and post-Noether views of the subject.

Several issues revolve around high school algebra:

If high schools did their jobs well, three-quarters of all mathematics courses

in community colleges would need to be totally redesigned. This is not an

argument for maintaining the status quoin which community colleges

largely repeat the high school curriculumbut a reflection of the need to

develop imaginative post-high school courses that meet the real needs of

students for broader mathematics education.

Colleges and universities do not give credit for remedial courses, so students

take these courses under a financial and psychological handicap. What are

the educational reasons for denying college credit to Algebra I while

awarding it to French I?

Most college faculty don't want to teach students who enter college still in

need of high school algebra, nor do they give much of their leadership energy

to making courses for such students effective.

We need a new suite of post-Algebra II courses, especially in community

colleges, that provide algebra-based materials in the service of major

vocational programs (e.g., health, business).

Placement testing in colleges and national exams taken by college-bound

students impede innovation in high school algebra by establishing public
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expectations for the traditional curriculum among students, parents, and

teachers.

I am, reluctantly, focusing this summary on issues other than teacher preparation. I

do want, however, to make one suggestionactually, more like a challengeabout the

need for rethinking the mathematics that is offered to prospective elementary school

teachers. Suppose, as we hope for the future, that stuaents enter college with a

mathematical experience similar to that suggested by the NCTM Standards. We would

then need a new course that might be thought of as "elementary mathematics from an

advanced standpoint," or perhaps as "advanced mathematics from an elementary point of

view." Such a course could serve well the mathematical needs of prospective elementary

teachers; of future parents who need to understand mathematics in order to support their

children's education; and of educated citizens who are seeking the benefits of a liberal arts

education. These three constituencies share much in commonthe need for deep

understanding of elementary mathematicsas distinct from the professional who needs

broad understanding of many parts of advanced mathematics. I suspect that a new

course, perhaps incorporating themes similar to those in On the Shoulders of Giants, could

serve all three purposes well.

The Brick Wall

Faculty in departments of mathematics have always known that a student's first

encounter with abstract algebrareal mathematicsis often a traumatic experience.

Abstract algebra and to a lesser degree the parallel course in elementary real analysis are

often the first college courses that employ proof in an essential way. Students whose

view of mathematics is shaped by 2 years of problems-oriented calculus enter these junior-

level courses with a distorted view of the nature of mathematics. For many, they hit a

brick wall and never recover.

Conferees who have had extensive experience with this phenomenon report that the

situation is much worse now than it was, say, 20 years ago. Various explanations are

offered. Students have changedthe population is more diverse, with more diverse

aspirations and goals; calculus has changedto emphasize skills and problems, not

rigorous thinking; high schools have changedto stress preparation for calculus rather

than preparation for mathematical thinking. Probably all conjectures are valid: today's
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students who enter college-level algebra courses are expected to abstract from things they

haven't experienced thus violating a common lesson of both history arid pedagogy.

One conjecture emerged that intrigues me. I pass it on for your consideration, not

as a definitive explanation, but as a way to view the problem that may harbor clues to

possible solution.

The route from arithmetic to calculus is through high school algebra. During the

past two decades there has been a clear shift in emphasis, reinforced in recent years by

the introduction of graphing calculators, to emphasize functions (that is, pre-analysis)

rather than operations (that is, pre-algebra). Does the functions approach to high school

algebra impede development of key algebraic skills and intuition?

The following schematic diagram suggests two possible mathematical routes from

grade school to college:

Grade Pre-analysis route Pre-algebra route

K-6 Arithmetic Arithmetic Operations

5-8 Quantitative Measure Algorithms & Advanced Operations

9-11 Functional Approach Algebraic Approach

11-13 Elementary Functions [ ???

12-14 Calculus Linear Algebra

14-16 Analysis Abstract Algebra

The point of this chart is to suggest that the natural bridge to calculus provided by

the pre-calculus emphasis in the upper years of high school does not exist for abstract

algebra. Much of high school algebra now serves to introduce students to the function zoo

so that they enter calculus with a rich base of examples on which to build abstract ideas.

Where in the curriculum do students encounter a similar base of algebra-rich examples

from which to build the abstractions required for modern algebra?

Big Ideas

Everyone seems to agree that algebra should focus on a few big ideas rather than

lots of isolated skills. Part of the "avoiding algebra" subtext of this workshop has been the

powerful reluctance of everyone to avoid proposing these key ideas. The explanation for

this reluctance can hardly be an attack of modesty, since opinions have flown freely on

many subjects on which we are in many ways less expert. It is hard to believe that no one

has any idea about the key ideas in algebra.
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Maybe the problem is that no one wants to go first. Well, now that it is less than

an hour to go before the close of the workshop, this is our last chance to address the

issue. I'll stop for five minutes to let each table disc JSS this question: What are the few

key ideas of algebra that must be addressed in any curriculum? Each table will make a

listkeep it short, pleaseand we'll see afterwards if there is any consensus (see

appendix B for the list of key ideas produced by the conferees through this exercise).

Debates and Open Questions

Throughout the workshop I picked up hints of debates, disagreements, and areas

requiring further investigation. Here are a few examples, enough to suggest that there is

plenty of work ahead for all of us.

Does the study of algebra really develop general problem solving skills? Was its

historical use to empower the elite based on its real utility in developing broad

political problem solving skills, or might the persistence of algebraic hurdles for

leadership been merely a convenient social filter designed to select those who

had the advantage of a good education?

Nearly everyone at this meeting seems to support the assertion that the same

"algebra for all" in grades K-11 will serve equally well college-bound and work-

bound students. Although the pace and depth of learning will differ from

student to student, the core conjecture of algebra for all is that the same

algebra is best for all, at least up to age 16 or so. Question: Is this an article

of faith, or a claim rooted in evidence? We definitely need to learn more about

how mathematical thinking is used on the job to determine whether it is

defensible to adhere to a common core up until the 11th grade. (Of course,

earlier fragmentation would reintroduce tracking, with all its negative social

consequences.)

"We need to understand better the nature of student understanding of algebraic

concepts." This is what I might call my Alan Schoenfeld memorial sentence,

since he wisely asserted it with increasing frequency as discussions seemed to

drift into areas in which our ignorance exceeds our knowledge. I'd like to

propose an iteration: "We need to understand better the nature of faculty

understanding of student understanding of algebraic concepts." (I'm sure that

John Conway can find a way to provide several more iterations.)
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Is "watering down" a code word for preserving the filter role of algebra? is the

public pressure for excellence just a subterfuge for gaining an

advantageexcellence for the elite, mediocrity for the masses? There is some

evidence that parental pressure for maintaining traditional courses validated by

traditional exams is more a means of maintaining a competition which they

believe their children can win than it is a true belief in the educational wisdom

of these exams. Similarly, some university faculty insist on traditional entrance

expectations not so much because they have concluded based on a review of

all the evidence that these expectations yield better education, but because

they fit better the courses the faculty are accustomed to teaching. There is a

real danger that any kind of "new" algebra will be rejected either by the public

or by mathematicians simply because it changes the rules of the game.

Is there a better approach to elementary algebra for adults than repeating prior

failure? Must everyone repeat the traditional syllabus, regardless of age,

background, and educational objectives? Algebra is no longer just a subject

taught to adolescents; more adults study high school algebra than study

calculus and statistics combined. We need to find better ways to help

everyone learn algebra.

Related to the previous question is one of a narrower but nonetheless

fundamental character: Can one delay symbol manipulations (in Algebra I) and

then catch up later? If symbol manipulation is now less important for real

applications, can it be delayed without serious harm to students' ability to learn

subsequent algebra and abstract mathematics? Is there an appropriate time for

learning algebraas there is for languagethat, once passed, is difficult to

recover?

Some people have been discussing a political and rhetorical issue: Do we want

to stress "algebra for all" or quantitative literacy ("numeracy")? The former

may have the flavor of medicine, the latter of a civic duty. What are the

political implications? Voices were heard on all sides of this issue.

Finally, a question based on reflection from many side conversations: Is an

emphasis on what I might gently term "revolutionary" ideas (e.g., eliminating all

algebra courses in school; utopian use of technology) just a way to avoid the
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real problems of today's schools and colleges? This perennial tension between

idealism and pragmatism was well reflected by the workshop participants -and

in our discussions. It is a problem that we all face everyday in our work, one

that we must bear in mind as we seek public support for improved mathematics

education.

Challenges

I close with several challenges that arose from many parts of this workshop:

Can we create a rich curriculum for high school algebra that truly

integrates work force and academic perspectives?

Can technology help develop algebraic and reasoningnot merely

geometricskills? Can there be an "algebraist's sketchpad"?

Can the clients of high school algebra be persuaded to forego any part of the

traditional repertoire of symbol manipulation? Can students learn mathematics

if manipulations are slighted?

Can teachers possibly keep up with the proposed changes? If we believe the

popular diagnosis about weak preparation of teachers for today's curriculum,

how can we imagine that they could teach a curriculum based on some of the

more imaginative ideas at this conference? Could the United States afford the

required retrain;ng?

Can we persuade the public that new algebra is real algebra? How can we allay

the suspicion that algebra without mind-numbing manipulation is not just

another example of "dumbed-down" curriculum?

Can mathematicians retain control of algebra in the face of the new proposals

for national certification of standards and performance expectations (e.g., the

proposed National Education Standafds and Improvement Council INESICI)?

Will the symbolism of algebra as a public good shift control from professionals

to politicians in setting national standards? Who, ultimately, will decide what

algebra is?
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Gleanings and Grazings

Hidden here and there in our conversations and speeches are a variety of slogans

that I leave as my parting contribution:

Algebraists Anonymous

Algebra as a new civil right

A "Declaration of Ignorance"

More math means more money

Those who can, do; those who understand, teach

Number sense, symbol sense, function sense

6 R's of college: remedial reading, remedial writing, remedial 'rithmetic

Quantitative reasoning is algebra without symbols, algebra without

knowing it

"Algebra for all" is like a slow motion train wreck: if it fails, it will confirm

the public belief that most students can't learn algebra
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Appendix A: Why Study Algebra?
Conferees' Perspectives

Why require algebra? (addressed to parents and school boards)

The information age is characterized by the generation of massive quantities of

data; indeed, information is often identified as "the new capital." Increasingly, the

ability to deaf with large bodies of data is critical both to employability and to the

exercise of the responsibilities and rights of citizenship. In order to do this, it is

essential to consider variables within the data, and to view the data by imposing (or

finding) structures on it. Algebra is the science of variables and models; knowledge

of algebra is therefore the key to both employment and citizenship.

Algebra helps develop students' ability to conceptualize ideas from the specific to

the general. It helps them discover patterns among items in a set. Finally, it

enables them to think through the various aspects of a problem-situation, to identify

known and unknown quantities and the relationships among them, and to develop a

strategy for determining the values of unknown quantities.

Mathematics in all its facets provides ways of organizing, making sense of, and

reasoning about patterns in the world of our experience. Many of the most

significant patterns involve relations among variable quantities. Algebra is the basic

set of ideas and techniques for describing and reasoning about relations among

quantitative variables.

Algebra is a powerful way to organize quantitative relationships which in turn can

reveal new information (solutions). With an algebraic underpinning, one can see

fundamental similarities in structure among diverse contexts.

Algebra provides students with the knowledge and ability to manipulate situations

(symbols) so that they may better understand what is going on around them in the

world.

Algebra provides a language and way of thinking which allows us to think about

and communicate to others general properties and patterns of situations involving

uncertainty, change, quantities, size, and spaces.
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Students need the general mental discipline and specific problem solving skills of

algebra (e.g., manipulating symbols, solving for the unknown in order to compete

for and hold an increasing number of technologically-related jobs in our economy).

Ours is a technological society and becoming increasingly so. Algebraic thinking,

the experience of looking quantitatively at situations and data (not the use per se of

variables) is necessary to be a productive, contributing citizen, both through

employment and consumerism.

Algebra is the entry point for formalism and abstraction. It is required in order to

understand the world around us and to function effectively in it as a citizen and

worker. The nature of work and of jobs more and more requires the capacity for

formalism and abstraction to formulate issues and to solve problems.

Algebra is the one place in the high school curriculum where students are taught

how to reason quantitatively and objectively about situations in tl'e re& arid

where the quantification cannot just be obtained by common sense and guessing.

Elements include symbolic representation, precise computation, and interpretation of

the symbolic (or numeric) variables in the context of the problemin short,

(mathematical) modeling.

Algebra is becoming a universal language which describes relationshipscovariation

between two or more traits in many disciplines, businesses, and discussions for

citizenship.

Most of contemporary society, our technology, and our work depends upon

mathematical models. Those models require an understanding of algebr i. The

ability to use algebra in constructing these models is essential to success in today's

wurld.

We need an algebra program that everyone should have. In it, students would learn

to understand events and systems that are important in their work and in society

more analytically and precisely in terms of their quantitative aspects; they would

also learn to recognize and formulate key questions and learn to formulate

arguments more persuasively.
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Algebra is a language one uses to represent the relationships of one set of variables

to another set, The representation process involves tabular, graphical and symbolic

symbols and rules. It is the language of mathematics, science, and business;

therefore, all should learn to use it.

By being successful in this "new" algebra, a student will explore relationships

among quantities and ways of thinking mathematically which describe life in our

complex world and the workplace.

Algebraic thinking enables one to figure things out by thinking in terms of what's

known, what's not known, and what are the relationships among them.

Algebra is the "new literacy." Seventy-five percent of jobs require Algebra I and

some geometry; therefore, to be prepared for society (and jobs), students need

algebra.

Why study algebra? (addressed to high school students)

Properly learned, algebra embodies both an analytic perspectiveyou learn to make

sense of situations, to find out "what makes things tick" and a symbolic language

that helps to represent such situations and make sense of them. It's an important

aspect of "mathematical power."

Algebra at the high school level has two components. One might be called ideas (or

concepts), and the other means of representation. Concepts include, for example,

the distinction between linear and nonlinear phenomena, the idea of rate of change

and the rate of change of the rate of change. Means of representation are used

both to communicate with others, and to think about things oursi .ves. They

include graphs, tables, finite differences, algorithms, recursion rules, and

expressions like y = e"(4) sin(alpha)t.

We are going to learn to analyze situations, that is, to understand what is going on,

and look for the principles of what is going on, and therefore what should be done.

We will pull out ways of thinking that can be used elsewhere.

Algebra introduces ways of modeling (describing) real-world situations. It involves

use of symbols and graphs, and techniques for solving problems and making

inferences. For example, y = 2(x-60) + 95 is a model that yields the speeding fine

on the Pennsylvania Turnpike.
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I would like you to travel to a town that you have never visited. When you get off

the plane I want you to imagine that all signs have been made invisible to you, but

everyone else can read them. Your job is to get to your hotel. You can well

imagine how lost you would be. The same is true of anyone who is ignorant of

mathematics as that person tries to make his or her way through nature.

Algebra is the first stop beyond arithmetic in quantitative thinking. It helps students

learn to formulate and solve problems, to identify and communicate patterns and

trends. !t builds skills and patterns of thought essential to accomplishing many

quantitative challenges we face in everyday life (home finances, business, tra.:1-

professions). Indeed, it is fundamental to quantitative literacy.

To be able to deal with problem situations that arise in life without algebra as a tool

for reasoning would be very difficult, if not impossible. Algebra provides the

language that is used in the study of more mathematics.

Through the study of algebra you will learn the skills of abstraction and

generalization that are indispensable for operating in the information age.

Why study algebra? (addressed to college students)

Most mathematics students in college still think of mathematics as problem-solving

and computation. More algebra taught well gives them a glimpse of systematic

thinking, of the essence of mathematics. The skills of advanced algebra are

generalizable to computing, to logic, and to higher order reasoning. It opens

intellectual and not just career doors.

Algebra'is a branch of mathematics which is essential to main areas of physics. It

also has applications for the recently developed areas of error-correcting codes and

cryptography. It is the language of mathematics and part of our cultural heritage.

Algebra studies the commonalities that occur in various number systems or other

objects and operations on them (matrices, transformations, logical propositions).

The study of algebra shows the power of mathematics to synthesize a variety of

mathematical properties from different contexts.

Abstract algebra is the study of the structure of sets equipped with formal

operations. By abstracting the essential ideas of structure, we are able to see the

common features of diverse situations. Rings, for example, complete the structure

of arithmetic and polynomial manipulation of high school algebra.
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Linear algebra provides a means for manipulating data. It is a means to solve

systems of equations. It also provides a tool for expressing and solving geometrical

problems. It is a course that has connections to many mathematical and geometric

ideas.

Linear algebra is the story of linear relationships. It started off with the complete

theory of systems of linear equations, but has gone far beyond that. Often

something in the real world is specified by a number of parametersnumbers like x,

y, z, ... Some other facts about it are expressed by linear functions of these

parameters, like

X = 3x + 5y - 7z ...

Y = 2x 9y + z
Linear algebra studies these linear relationships. You might have a reactor vessel,

with pressure, temperature, ,:oncentrations as the starting numbers x, y, z, ... and

reaction products as the new ones, X, Y, Z, Or it might be some other very

different situation. There is a rich and powerful and non-obvious theory of all this:

it's called linear algebra. In addition to real-life examples, there are lots of other

examples inside mathematics itself. Indeed, linear algebra is fundamental to almost

all pure mathematics as well as being the most prominent type of mathematics used

in its applications.

Why study higher algebra? In order to see the power of abstract ideas, for

example, groups, which one can get by abstracting from several examples {integers,

permutations), feeding back to apply to number theory and combinatorics (Burnside

enumeration, chemical molecules) to give insight into many other systems.
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Appendix B: A Few "Big Ideas" of Algebra
Conferees' Perspectives

Generality, representation, quantity, structure, relationships

The use of symbols to represent ideas or numbers

The expression of relationships by equations

The way expressions vary as the numbers in them change

The difference between linear and nonlinear behavior

Representational abilities for modeling systems with variability

Operations on systems focusing in common properties, structures, and functions

Power of symbols to assist reasoning and to communicate

Modelingtransition from physical to mathematical

Reasoning about quantitative situations

Recognizing patterns and important (basic) functions

Reasoning with these patterns

Communicating ideas about these patterns in multiple representations: verbal,

tabular, symbolic, graphic, and in problem situations

Linearity vs. nonlinearity

Equivalent representations (within and among graphs, tables, symbols)

Variable quantities (x)

Representation: numerical, graphic, verbal, symbolic

Operations

Structures

Functions and relations

Symbol sense

Generality

Representational systems

Linearity and nonlinearity

Relationships and functions

Structure

139

30



L

Solving systems

Abstraction

Algorithm (proof)

Symbol sense

Patterns, descriptions

Symbol manipulation

Obtaining unknown information from known

Multiple representation

Underlying structure
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Appendix A
UNITED STATES DEPARTMENT OF EDUCATION

OFFICE OF THE ASSISTANT SECRETARY

FOR EDUCATIONAL RESEARCH AND IMPROVEMENT

THE ALGEBRA INITIATIVE COLLOQUIUM
The Xerox Document University, Leesburg Virginia

December 9 through 12, 1993

Thursday evening, December 9, 1993

3:00 - 6:30 Registration

6:30 - 7:00 Cash Bar (Dining Room, Center Section)

7:00 9:00 Tracihg the Development of Algebra and of Algebra
Education in the Schools

9:00-9:30

Dinner Session

Welcome & Introduction: Joseph Conaty, Director,
Office of Research, OERI

Speaker: Victor Katz, University of the District
of Columbia

Discussion

Charge to Participants: Carole Lacampagne, Office
of Research, OERI

Meeting of Working Group Chairs and At-Large
Participants

Friday, December 10, 1993

7:00 - 8:00

8:30 - 10:00

Breakfast

Creating an Appropriate Algebra Experience for all
K-12 Students (Room 3475 Red)

Speaker: James
at Dartmouth

Responders:

Discussion

Kaput, University of Massachusetts

Gail Burrill, Whitnall High School,
Greenfield, Wisconsin

James Fey, University of Maryland
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10:00 - 10:30 Break

10:30 - 12:00 Working Group Sessions

Participants will meet with their assigned working
groups for discussion of key issues

(Working
(Working
(Working
(Working

12:00 1:00 Lunch

1:30 - 3:00

Group
Group
Group
Group

1, Room 3263 Yellow)
2, Room 3461 Red)
3, Room 3465 Red)
4, Room 3463 Red)

Renewing Algebra at the College Level to Serve the
Future Mathematician, Scientist, and Engineer
(Room 3475 Red)

Speaker: Michael Artin, Massachusetts Institute
of Technology

Responder:

Discussion

3:00 - 3:30 Break

Vera Pless, University
at Chicago

of Illinois

3:30 - 5:00 Working Group Sessions

Participants will meet with their assigned
groups for discussion of key issues

(Working
(Working
(Working
(Working

6:00 - 7:00 Dinner

Group
Group
Group
Group

1, Room
2, Room
3, Room
4, Room

3263
3461
3465
3463

Yellow)
Red)
Red)
Red)

7:00 - 8:30 Cross-cutting Panel and Discussion
(Room 3475 Red)

working

Two representatives from each Working Group will
outline issues discussed in their Working Groups
that cut across Working Group boundaries. Whole
group discussion will follow.

8:30 - 9:00 Meeting of Working Group Chairs and At-Large
Participants
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Saturday, December 11, 1993

8:00 - 8:45 Breakfast

8:45 - 10:15 Reshaping Algebra to Serve the Evolving Needs of
the Technical Workforce
(Room 3475 Red)

Speaker: Henry Pollak,
University

Responder: Solomon

Discussion

10:15 - 10:45 Break

10:45 - 11:45 Working Group Sessions

Participants will meet with their assigned
groups for discussion of key issues

Teachers College, Columbia

Garfunkel, COMA?, Inc.

(Working Group 1, Room
(Working Group 2, Room
(Working Group 3, Room
(Working Group 4, Room

11:45 - 12:30 Lunch

3263
3461
3465
3463

Yellow)
Red)
Red)
Red)

working

1:00 - 2:30 Educating Teachers, Including K-8 Teachers,
Provide Appropriate Algebra Experiences for
Students
(Room 3475 Red)

Speaker:

Responder:

Discussion

Alba Gonzalez Thompson,
University

2:30 - 3:00 Break

Marjorie Enneking,
University

to
Their

San Diego State

Portland State

3:00 - 5:00 Working Group Sessions

Participants will meet with their assigned working
groups for discussion of key issues

(Working Group 1, Room 3263 Yellow)
(Working Group 2, Room 3461 Red)
(Working Group 3, Room 3465 Red)
(Working Group 4, Room 3463 Red)
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5:30 - 6:30 Dinner

7:00 - 8:30 Cross-cutting Groups

Representatives from each Working Group will meet
in four Cross-cutting Groups to outline issues
discussed in their respective Working Groups that
cut across Working Group boundaries.

(Cross-cutting Group 1, Room 3263 Yellow)
(Cross-cutting Group 2, Room 3461 Red)
(Cross-cutting Group 3, Room 3465 Red)
(Cross-cutting Group 4, Room 3463 Red)

8:30 - 9:00 Meeting of Working Group Chairs and At-Large
Participants

Sunday, December 12, 1993

8:00 8:45 Breakfast

8:45 9:45 Cross-cutting Working Groups Panel and Discussion
(Room 3475 Red)

Two representatives from each Cross-cutting
Working Group will present the conclusions of
those working groups. Whole group discussion will
follow.

9:45 - 10:15 Break

10:15 - 11:45 Wrap up and Look to the Future
(Room 3475 Red)

Speaker: Lynn Steen, Mathematical Sciences
Education Board

Discussion

Where Do We Go From Here?

Discussant: Carole Lacampagne

11:45 12:30 Lunch

1:00 Bus departs for Dulles Airport from Plaza B

Please leave your room key at the registration
desk or at the key drop box provided at Plaza B.
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Appendix B
Conceptual Framework for the Algebra Initiative

of the National Institute on Student Achievement,
Curriculum, and Assessment

Carole B. Lacampagne

Algebra is the language of mathematics. It opens doors to more advanced

mathematical topics for those who master basic algebraic concepts. It closes doors to

college and to technology-based careers for those who do not. Those most seriously

affected by lack of algebraic skills are students from minority groups. Moreover, advances

in the field of algebra, technology, in the needs of the work force, and in research on the

teaching and learning of algebra should profoundly affect what algebra is taught and how it

is taught and learned. Unfortunately, cnanges in the algebra curriculum and in its teaching

and learning do not manifest themselves frequently in the classrooms of America. The

proposed National Institute on Student Achievement, Curriculum, and Assessment initiative

will confront this current crisis in the learning and teaching of algebra at all levels,

kindergarten through graduate school.

Problem and Significance of the Initiative

Algebra is central to continued learning in mathematics. The position of the National

Council of Teachers of Mathematics and of the ensuing reform in mathematics recognizes

the need for restructuring algebra to make it part of the curriculum for all students.

Moreover, reform is just under way in college curriculum and teaching of mathematics,

including algebra. However, there is no coordinating mechanism to link all the groups

concerned with the content, teaching and learning, and research in algebra. It is the aim of

the proposed Algebra Initiative to provide this coordinating mechanism.

Conceptual Framework

Four key constructs provide a conceptual framework for the National Institute's

Algebra Initiative:

Creating an appropriate algebra experience for all grades K -1 2 students;
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Educating teachers, including K-8 teachers, to provide these algebra

experiences;

Rt -hapirig algebra to serve the evolving needs of the technical work force;

and

Renewing algebra at the college level to serve the future mathematician,

scientist, and engineer.

These constructs will be addressed in light of current and proposed advances in computer

technology that should seriously affect what algebra is learned in the 21st century, and

how it is taught.

Moreover, the uniqueness of the National Institute on Student Achievement,

Curriculum, and Assessment's Algebra Initiative is that these constructs will be dealt with

in toto; that is, the continuum of and branching of algebra across the gamut of potential

users those whose formal experience with algebra ends in high school through the

research mathematician.

Algebra for All Students
In its Curriculum and Evaluation Standards for School Mathematics, the National

Council of Teachers of Mathematics recommends algebra for all students, beginning in the

middle school years as a bridge between the concrete mathematics curriculum of the

elementary school and the more formal curriculum of the high school. Moreover, algebra is

to be part of a core curriculum in high school mathematics, to be taken by all students.

The National Center for Research in Mathematical Sciences Education's (NCRMSE)

Working Group on Learning/Teaching of Algebra and Quantitative Analysis is also re-

examining the place of algebra in a core quantitative mathematics curriculum. They are

looking to reform the algebra curriculum along such coherent mathematical ideas as

function and structure and to study the effect of such a curriculum on how teachers teach

algebra. They are looking at the reformed curriculum in light of advances in computer

software and technology which allow one to do many of the algorithmic and graphing

processes of algebra on a computer or sophisticated calculator.

Besides supporting the NCRMSE Working Group on Learning/Teaching of Algebra

and Quantitative Analysis, the U.S. Department of Education supports other algebra

initiatives including Robert Moses' Algebra Project, a pre-algebra project designed to bridge

the gap between arithmeti and algebra for minority students.
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The National Science Foundation is funding a variety of projects to develop

instructional materials in mathematics, K-12. Many of these materials include algebra

strands. One such materials development project addresses directly a core high school

mathematics curriculum which includes algebra. Several others have algebra strands

cutting across several grade levels. Still others stress algebraic applications to. other

disciplines such as science and business.

Questions that need to be addressed include:

What algebra concepts should be part of the core mathematics curriculum for

all students?

How should they be taught and learned?

What is the role of technology in this curriculum and pedagogy?

How will these algebra concepts be tied into the needs of an educated citizen

and a technical worker?

How will they be related to the continuum of algebra in college and beyond?

How will they prepare students for lifelong learning in mathematics?

Algebra for Future School Teachers- of Mathematics

With the teaching and learning of algebra moved down to the middle school years,

elementary school teachers now need a thorough understanding of the underlying concepts

of algebra, of how children understand/misunderstand basic algebra concepts, and of

pedagogical approaches suitable to helping children develop early algebra concepts. High

school teachers of mathematics need a new and different knowledge of algebra and

appropriate pedagogy. They need to understand the links between algebra and other fields

of mathematics as well as between algebra and its applications to the social, natural, and

physical sciences.

Thus, mathematics curriculum and pedagogy for future teachers of mathematics

need to be rethought in light of the changing role of algebra in the school curriculum. The

Mathematical Association of America recognizes the need for a different experience in

algebra for future school teachers of mathematics in its document A Ca// for Change:

Recommendations for the Mathematical Preparation of Teachers. However, much work is

needed to effect change in the algebraic education of future teachers.

Questions that need to be addressed include:

What algebra concepts and pedagogy should be fundamental to mathematics
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courses required of future elementary school teachers? middle school

teachers? high school teachers?

How can future teachers best acquire such knowledge and skills?

How can we enhance the algebraic and pedagogical skills of current

teachers?

Algebra for the Technical Work Force

The majority of U.S. students are leaving school ill-prepared in mathematical

problem solving, planning and optimizing, and mathematical modelingmathematical tools

needed in forward-thinking business and industry. All of the above areas are based on the

language and operations of algebra and all should play an important role in curricula

designed for those entering the technical work forcebe they products of high school

vocational education, 2-plus-2 plans, or 4-year college technical education curricula.

Emphasis here will be on developing curricula and pedagogy to equip students to meet the

demands of the 21st century work force and to provide the base for lifelong learning in

mathematics as technology shifts and careers change.

Questions to be addressed include:

What algebra concepts, beyond the core, do students preparing to enter the

technical work force need?

How should these concepts be taught and learned?

What is the role of technology in such a curriculum and pedagogy?

How will these algebra concepts prepare students for continuing learning in

mathematics?

Can we circumvent the dreary sequence of remedial courses in arithmetic

and algebra that many community college students must take?

Algebra for the Future Mathematician, Scientist, and Engineer

Algebra is the language of mathematics. Just as school algebra allows students to

communicate mathematically, to model problems and to solve them, its extensions, linear

and abstract algebra form a basis for many areas of mathematics: group theory, ring

theory, algebraic topology, and algebraic number theory, to name a few. Basic knowledge

of linear and abstract algebra concepts are required of all college mathematics majors, and

a deeper understanding of these concepts are required of all serious users of mathematics.
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Recent developments in computer software have made complex matrix manipulation,

graphing, and object manipulation quicker and have enabled further developments in

several areas of algebra.

Key questions to be considered include:

How should the transition from school algebra to the advanc- algebra

concepts taught in college be accomplished?

How can we help students develop mathematical maturity and smooth their

transition into a first proof course?

What advanced algebra concepts should form the core of the collegiate

mathematics major? for the graduate degree in mathematics?

How should these concepts be taught and learned?

What is the role of technology in such a curriculum and pedagogy?

What research opportunities in algebra can be afforded students in their

undergraduate and early graduate experience in mathematics?

How will these algebra concepts prepare students for employment outside of

academia?

Action Plan
The action plan for the National Institute on Student Achievement, Curriculum, and

Assessment's Algebra Initiative includes:

A 3 1/2 day invitational colloquium;

A widely distributed summary document for policymakers and teachers on

the major issues discussed at the colloquium;

A complete Proceedings of the colloquium to be distributed to the

mathematics and mathematics education communities;

A 2-year discretionary grant solicitation for a Linking Algebra project; and

The linking of other initiatives, both within the Department of Education and

across other federal agencies, to what is learned from the Algebra Initiative.

Invitational Colloquium

The National Institute on Student Achievement, Curriculum, and Assessment's

Algebra Initiative will begin with a 3 1/2 day invitational colloquium on algebra involving

about 40 key players from NCRMSE, the Algebra Project, principal investigators from

NSF's algebra materials development and research projects, college teachers of algebra,
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and mathematics and mathematics education researchers plus additional mathematics

experts from federal agencies. Carole Lacampagne will run the colloquium in coordination

with William Blair, James Kaput, and Richard Lesh.

Summary Document

A report writer with experience in writing articles about mathematics will be hired to

write a short document for policymakers and teachers based on issues raised at the

colloquium. This document will be distributed widely within 4 months of the colloquium.

Proceedings

All speakers, discussants, and participants in the colloquium will be asked to submit

papers to be published in a Proceedings. This document will be distributed to the

mathematics community.

Further dissemination of knowledge gained through the colloquium will occur at

workshops, minicourses, and talks on algebra given at annual meetings of the National

Council of Teachers of Mathematics, the Society for Industrial and Applied Mathematics,

and at semiannual joint meetings of the Mathematical Association of America, and the

American Mathematical Society.

Two-year Discretionary Grant Solicitation for a Linking Algebra Project

It is anticipated that the Department of Education, perhaps in collaboration with

other federal agencies, will fund a Linking Algebra project organized around the four key

constructs of the colloquium to extend the concepts of, embark on research in, and

prepare for implementation in schools and colleges knowledge gained in the colloquium.

It is anticipated that the Algebra Initiative through taking the broad view of algebra,

from the teaching and learning of algebra in the elementary school through breakthroughs

in research, will spur teachers of mathematics, teachers of teachers of mathematics, and

the mathematics and mathematics education communities to coordinate and extend the

role of algebra for all learners and users of mathematics.
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Appendix C
Participant List

Working Group 1: Creating an Appropriate Algebra Experience For All K-12
Students

Invited Participants

Diane Briars
Pittsburgh Public Schools
Pittsburgh, PA

Gail Burrill, WG1 Reactui
Whitnall High School
Greenfield, WI

Daniel Chazan
Michigan State University
East Lansing, MI

Robert Davis
Rutgers University
New Brunswick, NJ

James Fey, WG1 Reactor
University of Maryland
College Park, MD

Rogers Hall
University of California
Berkeley, CA

James Kaput, WG1 Speaker
University of Massachusetts at Dartmouth
North Dartmouth, MA

Robert Moses
The Algebra Project, Inc.
Cambridge, MA

Betty Phillips
Chair, NCTM Algebra Task Force
East Lansing, MI
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Alan Schoenfeld, WG1 Chair
University of California, Berkeley
Berkeley, CA

Za Iman Usiskin
University of Chicago
Chicago, IL

Federal Participants

Eric Robinson
National Science Foundation
Arlington, VA

Charles Stalford
U.S. Department of Education
Washington, DC

Working Group 2: Educating Teachers, Including K-8 Teachers, to Provide These
Algebra Experiences

Invited Participants

Alphonse Buccino, WG2 Chair
University of Georgia
Athens, GA

Suzanne Damarin
The Ohio State University
Columbus, OH

Marjorie Enneking, WG2 Reactor
Portland State University
Portland, OR

Naomi Fisher
University of Illinois at Chicago
Chicago, IL

Guershon Harel
Purdue University
West Lafayette, IN
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Alba Gonzalez Thompson, WG2 Speaker
San Diego State University
San Diego, CA

Federal Participants

Clare Gifford Banwart
U.S. Department of Education
Washington, DC

Henry Kepner
National Science Foundation
Arlington, VA

James Pratt
Johnson Space Center
Houston, TX

Cindy Musick
U.S. Department of Energy
Washington, DC

Tina Straley
National Science Foundation
Arlington, VA

Working Group 3: Reshaping Algebra to Serve the Evolving Needs of the Technical
Workforce

Invited Participants

Paul Davis
Worcester Polytechnic Institute
Worcester, MA

Susan Forman, WG3 Chair
Mathematical Sciences Education Board
Washington, DC

Solomon Garfunkel, WG3 Reactor
COMAP, Inc.
Lexington, MA
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James Greeno
Stanford University
Stanford, CA

Richard Lesh
Educational Testing Service
Princeton, NJ

Patrick McCray
G D Searle & Co.
Evanston, IL

Henry Pollak, WG3 Speaker
Columbia University
New York, NY

Thomas Romberg
University of Wisconsin-Madison
Madison, WI

Susan S. Wood
J. Sargeant Reynolds Community College
Richmond, VA

Federal Participants

Elizabeth Teles
National Science Foundation
Arlington, VA

Donna Walker
U.S. Department of Labor
Washington, DC

Working Group 4: Renewing Algebra at the College Level to Serve the Future
Mathematician, Scientist, and Engineer

Invited Participants

Michael Artin, WG4 Speaker
Massachusetts Institute of Technology
Cambridge, MA

William Blair
Northern Illinois University
DeKalb, IL
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John Conway
Princeton University
Princeton, NJ

Al Cuoco
Education Development Center
Newton, MA

Joseph Gal lian, WG4 Chair
University of Minnesota-Duluth
Duluth, MN
Cleve Moler
Chair, The Mathworks, Inc.
Sherborn, MA

Susan Montgomery
University of Southern California
Los Angeles, CA

Vera Pless, WG4 Reactor
University of Illinois at Chicago
Chicago, IL

William Velez
University of Arizona
Tucson, AZ

Federal Participants

Ann Boyle
National Science Foundation
Washington, DC

Charles F. Osgood
National Security Agency
Ft. George G. Meade, MD

Joan Straumanis
U.S. Department of Education
Washington, DC

At-Large Participants

Victor Katz, Keynote Speaker
University of the District of Columbia
Washington, DC
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Lynn Steen, Wrap-up Speaker
Mathematical Sciences Education Board
Washington, DC

Carole Lacampagne, Colloquium Convener
U.S. Department of Education
Washington, DC

Barry Cipra, Scientific Writer
Northfield, MN
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